# app.py import os from opik import track import gradio as gr import requests from smolagents import DuckDuckGoSearchTool, CodeAgent, WikipediaSearchTool, LiteLLMModel, CodeAgent, tool , OpenAIServerModel , PythonInterpreterTool from pathlib import Path import pathlib import tempfile import PyPDF2 from opik.integrations.openai import track_openai import pytesseract from PIL import Image from smolagents.tools import PipelineTool, Tool from typing import Union, Optional import pandas as pd from tabulate import tabulate # pragma: no cover – fallback path import re import opik import time from tenacity import retry, stop_after_attempt, wait_exponential, retry_if_exception_type, before_sleep_log import logging import random import sys # Set up logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) # --- Constants --- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" GROQ_API_KEY = os.getenv("Grok_api") # set as Secret in your Space OPIK_API_KEY = os.getenv("OPIK_API_KEY") # set as Secret in your Space OPIK_WORKSPACE = os.getenv("OPIK_WORKSPACE") # set as Variable in your Space # ── 2) Configure litellm & OpikLogger ───────────────────────────────────────── os.environ["GROQ_API_KEY"] = GROQ_API_KEY os.environ["OPIK_API_KEY"] = OPIK_API_KEY os.environ["OPIK_WORKSPACE"] = OPIK_WORKSPACE class ExcelToTextTool(Tool): """Render an Excel worksheet as Markdown text.""" # ------------------------------------------------------------------ # Required smol‑agents metadata # ------------------------------------------------------------------ name = "excel_to_text" description = ( "Read an Excel file and return a Markdown table of the requested sheet. " "Accepts either the sheet name or the zero-based index." ) inputs = { "excel_path": { "type": "string", "description": "Path to the Excel file (.xlsx / .xls).", }, "sheet_name": { "type": "string", "description": ( "Worksheet name or zero‑based index *as a string* (optional; default first sheet)." ), "nullable": True, }, } output_type = "string" # ------------------------------------------------------------------ # Core logic # ------------------------------------------------------------------ def forward( self, excel_path: str, sheet_name: Optional[str] = None, ) -> str: """Load *excel_path* and return the sheet as a Markdown table.""" path = pathlib.Path(excel_path).expanduser().resolve() if not path.exists(): return f"Error: Excel file not found at {path}" try: # Interpret sheet identifier ----------------------------------- sheet: Union[str, int] if sheet_name is None or sheet_name == "": sheet = 0 # first sheet else: # If the user passed a numeric string (e.g. "1"), cast to int sheet = int(sheet_name) if sheet_name.isdigit() else sheet_name # Load worksheet ---------------------------------------------- df = pd.read_excel(path, sheet_name=sheet) # Render to Markdown; fall back to tabulate if needed --------- if hasattr(pd.DataFrame, "to_markdown"): return df.to_markdown(index=False) from tabulate import tabulate # pragma: no cover – fallback path return tabulate(df, headers="keys", tablefmt="github", showindex=False) except Exception as exc: # broad catch keeps the agent chat‑friendly return f"Error reading Excel file: {exc}" def download_file_if_any(base_api_url: str, task_id: str) -> str | None: """ Try GET /files/{task_id}. • On HTTP 200 → save to a temp dir and return local path. • On 404 → return None. • On other errors → raise so caller can log / handle. """ url = f"{base_api_url}/files/{task_id}" try: resp = requests.get(url, timeout=30) if resp.status_code == 404: return None # no file resp.raise_for_status() # raise on 4xx/5xx ≠ 404 except requests.exceptions.HTTPError as e: # propagate non-404 errors (403, 500, …) raise e # ▸ Save bytes to a named file inside the system temp dir # Try to keep original extension from Content-Disposition if present. cdisp = resp.headers.get("content-disposition", "") filename = task_id # default base name if "filename=" in cdisp: m = re.search(r'filename="([^"]+)"', cdisp) if m: filename = m.group(1) # keep provided name tmp_dir = Path(tempfile.gettempdir()) / "gaia_files" tmp_dir.mkdir(exist_ok=True) file_path = tmp_dir / filename with open(file_path, "wb") as f: f.write(resp.content) return str(file_path) @tool def pdf_to_text_tool(pdf_path: str) -> str: """ Extract all text from a PDF file. Args: pdf_path : Path to pdf's Returns: Analysis result or error message """ path = Path(pdf_path).expanduser().resolve() if not path.exists(): return f"Error: PDF file not found at {path}" try: reader = PyPDF2.PdfReader(str(path)) text = "\n".join(page.extract_text() or "" for page in reader.pages) return text except Exception as e: return f"Error reading PDF file: {e}" @tool def analyze_image_tool(image_path: str) -> str: """ Analyze an image: return dimensions and OCR-extracted text. Args: image_path : Image path Returns: Analysis result or error message """ path = Path(image_path).expanduser().resolve() if not path.exists(): return f"Error: Image not found at {path}" try: img = Image.open(path) w, h = img.size ocr_text = pytesseract.image_to_string(img) return f"Dimensions: {w}×{h}\n\nOCR Text:\n{ocr_text}" except Exception as e: return f"Error analyzing image: {e}" # --- Basic Agent Definition --- class BasicAgent: def __init__(self): self.agent = CodeAgent( model=OpenAIServerModel(model_id="gpt-4o"), tools=[DuckDuckGoSearchTool(), WikipediaSearchTool(), ExcelToTextTool(), pdf_to_text_tool, analyze_image_tool,PythonInterpreterTool()], add_base_tools=True, additional_authorized_imports=['pandas', 'numpy', 'csv', 'subprocess'] ) # Response cache to avoid duplicate API calls self.response_cache = {} logger.info("BasicAgent initialized.") def __call__(self, question: str) -> str: logger.info(f"Agent received question (first 50 chars): {question[:50]}...") # Check cache first if question in self.response_cache: logger.info("Using cached response") return self.response_cache[question] try: # Use the retry wrapper to handle rate limits fixed_answer = call_llm_with_retry(self.agent, question) logger.info(f"Agent returning answer (first 50 chars): {fixed_answer[:50] if fixed_answer else 'None'}...") # Cache the response self.response_cache[question] = fixed_answer return fixed_answer except Exception as e: error_msg = f"Failed after multiple retries: {e}" logger.error(error_msg) return f"The model experienced an issue that couldn't be resolved with retries: {str(e)}" def run_and_submit_all(profile: gr.OAuthProfile | None): """ Fetches all questions, runs the BasicAgent on them, submits all answers, and displays the results. """ # --- Determine HF Space Runtime URL and Repo URL --- space_id = "l3xv/Final_Assignment_Template" if profile: username = f"{profile.username}" logger.info(f"User logged in: {username}") else: logger.warning("User not logged in.") return "Please Login to Hugging Face with the button.", None api_url = DEFAULT_API_URL questions_url = f"{api_url}/questions" submit_url = f"{api_url}/submit" # 1. Instantiate Agent try: agent = BasicAgent() except Exception as e: logger.error(f"Error instantiating agent: {e}") return f"Error initializing agent: {e}", None # In the case of an app running as a hugging Face space, this link points toward your codebase agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" logger.info(f"Agent code URL: {agent_code}") # 2. Fetch Questions logger.info(f"Fetching questions from: {questions_url}") try: response = requests.get(questions_url, timeout=15) response.raise_for_status() questions_data = response.json() if not questions_data: logger.warning("Fetched questions list is empty.") return "Fetched questions list is empty or invalid format.", None logger.info(f"Fetched {len(questions_data)} questions.") except requests.exceptions.RequestException as e: logger.error(f"Error fetching questions: {e}") return f"Error fetching questions: {e}", None except requests.exceptions.JSONDecodeError as e: logger.error(f"Error decoding JSON response from questions endpoint: {e}") logger.error(f"Response text: {response.text[:500]}") return f"Error decoding server response for questions: {e}", None except Exception as e: logger.error(f"An unexpected error occurred fetching questions: {e}") return f"An unexpected error occurred fetching questions: {e}", None # 3. Run your Agent with rate limit handling and batching results_log = [] answers_payload = [] logger.info(f"Running agent on {len(questions_data)} questions...") # Process questions with a small delay between them to avoid rate limits batch_size = 1 # Process one at a time for rate limiting for i, item in enumerate(questions_data): task_id = item.get("task_id") question_text = item.get("question") if not task_id or question_text is None: logger.warning(f"Skipping item with missing task_id or question: {item}") continue # ----------fetch any attached file ---------- try: file_path = download_file_if_any(api_url, task_id) except Exception as e: file_path = None logger.error(f"[file fetch error] {task_id}: {e}") # ---------- Build the prompt sent to the agent ---------- if file_path: q_for_agent = ( f"{question_text}\n\n" f"---\n" f"A file was downloaded for this task and saved locally at:\n" f"{file_path}\n" f"---\n\n" ) else: q_for_agent = question_text try: logger.info(f"Processing question {i+1}/{len(questions_data)}: {task_id}") submitted_answer = agent(q_for_agent) answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) # Add a delay between questions to manage rate limits if i < len(questions_data) - 1: # Don't delay after the last question delay = random.uniform(5, 10) # Random delay between 5-10 seconds logger.info(f"Processed question {i+1}/{len(questions_data)}. Waiting {delay:.2f}s before next question...") time.sleep(delay) except Exception as e: logger.error(f"Error running agent on task {task_id}: {e}") results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) if not answers_payload: logger.warning("Agent did not produce any answers to submit.") return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) # 4. Prepare Submission submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." logger.info(status_update) # 5. Submit logger.info(f"Submitting {len(answers_payload)} answers to: {submit_url}") try: response = requests.post(submit_url, json=submission_data, timeout=60) response.raise_for_status() result_data = response.json() final_status = ( f"Submission Successful!\n" f"User: {result_data.get('username')}\n" f"Overall Score: {result_data.get('score', 'N/A')}% " f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" f"Message: {result_data.get('message', 'No message received.')}" ) logger.info("Submission successful.") results_df = pd.DataFrame(results_log) return final_status, results_df except requests.exceptions.HTTPError as e: error_detail = f"Server responded with status {e.response.status_code}." try: error_json = e.response.json() error_detail += f" Detail: {error_json.get('detail', e.response.text)}" except requests.exceptions.JSONDecodeError: error_detail += f" Response: {e.response.text[:500]}" status_message = f"Submission Failed: {error_detail}" logger.error(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df except requests.exceptions.Timeout: status_message = "Submission Failed: The request timed out." logger.error(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df except requests.exceptions.RequestException as e: status_message = f"Submission Failed: Network error - {e}" logger.error(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df except Exception as e: status_message = f"An unexpected error occurred during submission: {e}" logger.error(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df # --- Build Gradio Interface using Blocks --- with gr.Blocks() as demo: gr.Markdown("# Basic Agent Evaluation Runner") gr.Markdown( """ **Instructions:** 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. --- **Disclaimers:** Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. """ ) gr.LoginButton() run_button = gr.Button("Run Evaluation & Submit All Answers") status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) run_button.click( fn=run_and_submit_all, outputs=[status_output, results_table] ) if __name__ == "__main__": banner = "\n" + "-"*30 + " App Starting " + "-"*30 logger.info(banner) # Check for SPACE_HOST and SPACE_ID at startup for information space_host_startup = os.getenv("SPACE_HOST") space_id_startup = "l3xv/Final_Assignment_Template" if space_host_startup: logger.info(f"✅ SPACE_HOST found: {space_host_startup}") logger.info(f" Runtime URL should be: https://{space_host_startup}.hf.space") else: logger.info("ℹ️ SPACE_HOST environment variable not found (running locally?).") if space_id_startup: # Print repo URLs if SPACE_ID is found logger.info(f"✅ SPACE_ID found: {space_id_startup}") logger.info(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") logger.info(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") else: logger.info("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") logger.info("-"*(60 + len(" App Starting ")) + "\n") logger.info("Launching Gradio Interface for Basic Agent Evaluation...") demo.launch(debug=True, share=False)