Spaces:
Sleeping
Sleeping
Upload speach_text.py
Browse files- speach_text.py +39 -0
speach_text.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import whisper
|
3 |
+
import tempfile
|
4 |
+
import os
|
5 |
+
|
6 |
+
st.title("🎙️ Audio to SRT Transcription App (Whisper)")
|
7 |
+
|
8 |
+
uploaded_file = st.file_uploader("Upload an audio file", type=["mp3", "wav", "m4a"])
|
9 |
+
|
10 |
+
if uploaded_file is not None:
|
11 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmpfile:
|
12 |
+
file_path = tmpfile.name
|
13 |
+
tmpfile.write(uploaded_file.read())
|
14 |
+
|
15 |
+
st.audio(uploaded_file, format="audio/wav")
|
16 |
+
|
17 |
+
# Load Whisper model
|
18 |
+
model = whisper.load_model("large") # Change to "medium" or "large" for better accuracy
|
19 |
+
|
20 |
+
# Transcribe
|
21 |
+
result = model.transcribe(file_path)
|
22 |
+
|
23 |
+
# Save as SRT
|
24 |
+
srt_path = file_path.replace(".wav", ".srt")
|
25 |
+
with open(srt_path, "w") as srt_file:
|
26 |
+
for i, segment in enumerate(result["segments"]):
|
27 |
+
start = segment["start"]
|
28 |
+
end = segment["end"]
|
29 |
+
text = segment["text"]
|
30 |
+
srt_file.write(f"{i+1}\n{start:.3f} --> {end:.3f}\n{text}\n\n")
|
31 |
+
|
32 |
+
st.success("✅ Transcription Complete!")
|
33 |
+
st.text_area("Transcribed Text:", result["text"], height=200)
|
34 |
+
|
35 |
+
with open(srt_path, "rb") as srt_file:
|
36 |
+
st.download_button("📥 Download SRT File", srt_file, file_name="transcription.srt", mime="text/plain")
|
37 |
+
|
38 |
+
os.remove(file_path)
|
39 |
+
os.remove(srt_path)
|