azeemkhan417's picture
Update app.py
52e85af verified
import streamlit as st
import cv2
import numpy as np
from ultralytics import YOLO
from PIL import Image
import os
st.title("YOLO Image and Video Processing")
# Allow users to upload images or videos
uploaded_file = st.file_uploader("Upload an image or video", type=["jpg", "jpeg", "png", "bmp", "mp4", "avi", "mov", "mkv"])
try:
model = YOLO('best.pt') # Replace with the path to your trained YOLO model
except Exception as e:
st.error(f"Error loading YOLO model: {e}")
def predict_and_save_image(path_test_car, output_image_path):
"""
Predicts and saves the bounding boxes on the given test image using the trained YOLO model.
Parameters:
path_test_car (str): Path to the test image file.
output_image_path (str): Path to save the output image file.
Returns:
str: The path to the saved output image file.
"""
try:
results = model.predict(path_test_car, device='cpu')
image = cv2.imread(path_test_car)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
for result in results:
for box in result.boxes:
x1, y1, x2, y2 = map(int, box.xyxy[0])
confidence = box.conf[0]
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.putText(image, f'{confidence * 100:.2f}%', (x1, y1 - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 0, 0), 2)
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
cv2.imwrite(output_image_path, image)
return output_image_path
except Exception as e:
st.error(f"Error processing image: {e}")
return None
def predict_and_plot_video(video_path, output_path):
"""
Predicts and saves the bounding boxes on the given test video using the trained YOLO model.
Parameters:
video_path (str): Path to the test video file.
output_path (str): Path to save the output video file.
Returns:
str: The path to the saved output video file.
"""
try:
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
st.error(f"Error opening video file: {video_path}")
return None
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(cap.get(cv2.CAP_PROP_FPS))
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, fps, (frame_width, frame_height))
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
results = model.predict(rgb_frame, device='cpu')
for result in results:
for box in result.boxes:
x1, y1, x2, y2 = map(int, box.xyxy[0])
confidence = box.conf[0]
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.putText(frame, f'{confidence * 100:.2f}%', (x1, y1 - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 0, 0), 2)
out.write(frame)
cap.release()
out.release()
return output_path
except Exception as e:
st.error(f"Error processing video: {e}")
return None
def process_media(input_path, output_path):
"""
Processes the uploaded media file (image or video) and returns the path to the saved output file.
Parameters:
input_path (str): Path to the input media file.
output_path (str): Path to save the output media file.
Returns:
str: The path to the saved output media file.
"""
file_extension = os.path.splitext(input_path)[1].lower()
if file_extension in ['.mp4', '.avi', '.mov', '.mkv']:
return predict_and_plot_video(input_path, output_path)
elif file_extension in ['.jpg', '.jpeg', '.png', '.bmp']:
return predict_and_save_image(input_path, output_path)
else:
st.error(f"Unsupported file type: {file_extension}")
return None
if uploaded_file is not None:
input_path = os.path.join("temp", uploaded_file.name)
output_path = os.path.join("temp", f"output_{uploaded_file.name}")
try:
with open(input_path, "wb") as f:
f.write(uploaded_file.getbuffer())
st.write("Processing...")
result_path = process_media(input_path, output_path)
if result_path:
if input_path.endswith(('.mp4', '.avi', '.mov', '.mkv')):
video_file = open(result_path, 'rb')
video_bytes = video_file.read()
st.video(video_bytes)
else:
st.image(result_path)
except Exception as e:
st.error(f"Error uploading or processing file: {e}")