|
import streamlit as st |
|
import cv2 |
|
import numpy as np |
|
from ultralytics import YOLO |
|
from PIL import Image |
|
import os |
|
st.title("YOLO Image and Video Processing") |
|
|
|
|
|
uploaded_file = st.file_uploader("Upload an image or video", type=["jpg", "jpeg", "png", "bmp", "mp4", "avi", "mov", "mkv"]) |
|
try: |
|
model = YOLO('best.pt') |
|
|
|
except Exception as e: |
|
st.error(f"Error loading YOLO model: {e}") |
|
|
|
|
|
def predict_and_save_image(path_test_car, output_image_path): |
|
""" |
|
Predicts and saves the bounding boxes on the given test image using the trained YOLO model. |
|
|
|
Parameters: |
|
path_test_car (str): Path to the test image file. |
|
output_image_path (str): Path to save the output image file. |
|
|
|
Returns: |
|
str: The path to the saved output image file. |
|
""" |
|
try: |
|
results = model.predict(path_test_car, device='cpu') |
|
image = cv2.imread(path_test_car) |
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) |
|
for result in results: |
|
for box in result.boxes: |
|
x1, y1, x2, y2 = map(int, box.xyxy[0]) |
|
confidence = box.conf[0] |
|
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2) |
|
cv2.putText(image, f'{confidence * 100:.2f}%', (x1, y1 - 10), |
|
cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 0, 0), 2) |
|
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) |
|
cv2.imwrite(output_image_path, image) |
|
return output_image_path |
|
except Exception as e: |
|
st.error(f"Error processing image: {e}") |
|
return None |
|
|
|
|
|
def predict_and_plot_video(video_path, output_path): |
|
""" |
|
Predicts and saves the bounding boxes on the given test video using the trained YOLO model. |
|
|
|
Parameters: |
|
video_path (str): Path to the test video file. |
|
output_path (str): Path to save the output video file. |
|
|
|
Returns: |
|
str: The path to the saved output video file. |
|
""" |
|
try: |
|
cap = cv2.VideoCapture(video_path) |
|
if not cap.isOpened(): |
|
st.error(f"Error opening video file: {video_path}") |
|
return None |
|
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) |
|
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) |
|
fps = int(cap.get(cv2.CAP_PROP_FPS)) |
|
fourcc = cv2.VideoWriter_fourcc(*'mp4v') |
|
out = cv2.VideoWriter(output_path, fourcc, fps, (frame_width, frame_height)) |
|
while cap.isOpened(): |
|
ret, frame = cap.read() |
|
if not ret: |
|
break |
|
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) |
|
results = model.predict(rgb_frame, device='cpu') |
|
for result in results: |
|
for box in result.boxes: |
|
x1, y1, x2, y2 = map(int, box.xyxy[0]) |
|
confidence = box.conf[0] |
|
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2) |
|
cv2.putText(frame, f'{confidence * 100:.2f}%', (x1, y1 - 10), |
|
cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 0, 0), 2) |
|
out.write(frame) |
|
cap.release() |
|
out.release() |
|
return output_path |
|
except Exception as e: |
|
st.error(f"Error processing video: {e}") |
|
return None |
|
|
|
|
|
def process_media(input_path, output_path): |
|
""" |
|
Processes the uploaded media file (image or video) and returns the path to the saved output file. |
|
|
|
Parameters: |
|
input_path (str): Path to the input media file. |
|
output_path (str): Path to save the output media file. |
|
|
|
Returns: |
|
str: The path to the saved output media file. |
|
""" |
|
file_extension = os.path.splitext(input_path)[1].lower() |
|
if file_extension in ['.mp4', '.avi', '.mov', '.mkv']: |
|
return predict_and_plot_video(input_path, output_path) |
|
elif file_extension in ['.jpg', '.jpeg', '.png', '.bmp']: |
|
return predict_and_save_image(input_path, output_path) |
|
else: |
|
st.error(f"Unsupported file type: {file_extension}") |
|
return None |
|
|
|
|
|
if uploaded_file is not None: |
|
input_path = os.path.join("temp", uploaded_file.name) |
|
output_path = os.path.join("temp", f"output_{uploaded_file.name}") |
|
try: |
|
with open(input_path, "wb") as f: |
|
f.write(uploaded_file.getbuffer()) |
|
st.write("Processing...") |
|
result_path = process_media(input_path, output_path) |
|
if result_path: |
|
if input_path.endswith(('.mp4', '.avi', '.mov', '.mkv')): |
|
video_file = open(result_path, 'rb') |
|
video_bytes = video_file.read() |
|
st.video(video_bytes) |
|
else: |
|
st.image(result_path) |
|
except Exception as e: |
|
st.error(f"Error uploading or processing file: {e}") |
|
|