Upload 9 files
Browse files- .gitattributes +2 -0
- best.pt +3 -0
- demo.mp4 +3 -0
- images.jpeg +0 -0
- main.py +128 -0
- requirements.txt +8 -0
- temp/demo.mp4 +3 -0
- temp/images.jpeg +0 -0
- temp/output_demo.mp4 +3 -0
- temp/output_images.jpeg +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
demo.mp4 filter=lfs diff=lfs merge=lfs -text
|
37 |
+
temp/output_demo.mp4 filter=lfs diff=lfs merge=lfs -text
|
best.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca30bc0b183d5932931b21c53b2e3f6ab8a773e26b0e737d36066da195507b05
|
3 |
+
size 6217113
|
demo.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e707d2ae1c912beb3e661a4c9f2b1587250e0abaa34bd524a7ceef0cdd26e93d
|
3 |
+
size 9563349
|
images.jpeg
ADDED
![]() |
main.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
from ultralytics import YOLO
|
5 |
+
from PIL import Image
|
6 |
+
import os
|
7 |
+
st.title("YOLO Image and Video Processing")
|
8 |
+
|
9 |
+
# Allow users to upload images or videos
|
10 |
+
uploaded_file = st.file_uploader("Upload an image or video", type=["jpg", "jpeg", "png", "bmp", "mp4", "avi", "mov", "mkv"])
|
11 |
+
try:
|
12 |
+
model = YOLO(r'C:\Users\vedan\PycharmProjects\license_plate\best.pt') # Replace with the path to your trained YOLO model
|
13 |
+
|
14 |
+
except Exception as e:
|
15 |
+
st.error(f"Error loading YOLO model: {e}")
|
16 |
+
|
17 |
+
|
18 |
+
def predict_and_save_image(path_test_car, output_image_path):
|
19 |
+
"""
|
20 |
+
Predicts and saves the bounding boxes on the given test image using the trained YOLO model.
|
21 |
+
|
22 |
+
Parameters:
|
23 |
+
path_test_car (str): Path to the test image file.
|
24 |
+
output_image_path (str): Path to save the output image file.
|
25 |
+
|
26 |
+
Returns:
|
27 |
+
str: The path to the saved output image file.
|
28 |
+
"""
|
29 |
+
try:
|
30 |
+
results = model.predict(path_test_car, device='cpu')
|
31 |
+
image = cv2.imread(path_test_car)
|
32 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
33 |
+
for result in results:
|
34 |
+
for box in result.boxes:
|
35 |
+
x1, y1, x2, y2 = map(int, box.xyxy[0])
|
36 |
+
confidence = box.conf[0]
|
37 |
+
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
38 |
+
cv2.putText(image, f'{confidence * 100:.2f}%', (x1, y1 - 10),
|
39 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 0, 0), 2)
|
40 |
+
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
41 |
+
cv2.imwrite(output_image_path, image)
|
42 |
+
return output_image_path
|
43 |
+
except Exception as e:
|
44 |
+
st.error(f"Error processing image: {e}")
|
45 |
+
return None
|
46 |
+
|
47 |
+
|
48 |
+
def predict_and_plot_video(video_path, output_path):
|
49 |
+
"""
|
50 |
+
Predicts and saves the bounding boxes on the given test video using the trained YOLO model.
|
51 |
+
|
52 |
+
Parameters:
|
53 |
+
video_path (str): Path to the test video file.
|
54 |
+
output_path (str): Path to save the output video file.
|
55 |
+
|
56 |
+
Returns:
|
57 |
+
str: The path to the saved output video file.
|
58 |
+
"""
|
59 |
+
try:
|
60 |
+
cap = cv2.VideoCapture(video_path)
|
61 |
+
if not cap.isOpened():
|
62 |
+
st.error(f"Error opening video file: {video_path}")
|
63 |
+
return None
|
64 |
+
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
65 |
+
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
66 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
67 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
68 |
+
out = cv2.VideoWriter(output_path, fourcc, fps, (frame_width, frame_height))
|
69 |
+
while cap.isOpened():
|
70 |
+
ret, frame = cap.read()
|
71 |
+
if not ret:
|
72 |
+
break
|
73 |
+
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
74 |
+
results = model.predict(rgb_frame, device='cpu')
|
75 |
+
for result in results:
|
76 |
+
for box in result.boxes:
|
77 |
+
x1, y1, x2, y2 = map(int, box.xyxy[0])
|
78 |
+
confidence = box.conf[0]
|
79 |
+
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
80 |
+
cv2.putText(frame, f'{confidence * 100:.2f}%', (x1, y1 - 10),
|
81 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 0, 0), 2)
|
82 |
+
out.write(frame)
|
83 |
+
cap.release()
|
84 |
+
out.release()
|
85 |
+
return output_path
|
86 |
+
except Exception as e:
|
87 |
+
st.error(f"Error processing video: {e}")
|
88 |
+
return None
|
89 |
+
|
90 |
+
|
91 |
+
def process_media(input_path, output_path):
|
92 |
+
"""
|
93 |
+
Processes the uploaded media file (image or video) and returns the path to the saved output file.
|
94 |
+
|
95 |
+
Parameters:
|
96 |
+
input_path (str): Path to the input media file.
|
97 |
+
output_path (str): Path to save the output media file.
|
98 |
+
|
99 |
+
Returns:
|
100 |
+
str: The path to the saved output media file.
|
101 |
+
"""
|
102 |
+
file_extension = os.path.splitext(input_path)[1].lower()
|
103 |
+
if file_extension in ['.mp4', '.avi', '.mov', '.mkv']:
|
104 |
+
return predict_and_plot_video(input_path, output_path)
|
105 |
+
elif file_extension in ['.jpg', '.jpeg', '.png', '.bmp']:
|
106 |
+
return predict_and_save_image(input_path, output_path)
|
107 |
+
else:
|
108 |
+
st.error(f"Unsupported file type: {file_extension}")
|
109 |
+
return None
|
110 |
+
|
111 |
+
|
112 |
+
if uploaded_file is not None:
|
113 |
+
input_path = os.path.join("temp", uploaded_file.name)
|
114 |
+
output_path = os.path.join("temp", f"output_{uploaded_file.name}")
|
115 |
+
try:
|
116 |
+
with open(input_path, "wb") as f:
|
117 |
+
f.write(uploaded_file.getbuffer())
|
118 |
+
st.write("Processing...")
|
119 |
+
result_path = process_media(input_path, output_path)
|
120 |
+
if result_path:
|
121 |
+
if input_path.endswith(('.mp4', '.avi', '.mov', '.mkv')):
|
122 |
+
video_file = open(result_path, 'rb')
|
123 |
+
video_bytes = video_file.read()
|
124 |
+
st.video(video_bytes)
|
125 |
+
else:
|
126 |
+
st.image(result_path)
|
127 |
+
except Exception as e:
|
128 |
+
st.error(f"Error uploading or processing file: {e}")
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas
|
2 |
+
matplotlib
|
3 |
+
streamlit
|
4 |
+
opencv-python
|
5 |
+
ultralytics
|
6 |
+
numpy
|
7 |
+
pillow
|
8 |
+
|
temp/demo.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e707d2ae1c912beb3e661a4c9f2b1587250e0abaa34bd524a7ceef0cdd26e93d
|
3 |
+
size 9563349
|
temp/images.jpeg
ADDED
![]() |
temp/output_demo.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:099c667151f6e6cdf3f0615b185e227bcd55076e0a7437f68c6a24129c4b1709
|
3 |
+
size 16161833
|
temp/output_images.jpeg
ADDED
![]() |