Spaces:
Running
Running
File size: 89,807 Bytes
5bef7be b3f93dc 5bef7be d612cbd 9794577 a1abb42 b78f727 5bef7be b3f93dc 5bef7be b3f93dc cf0e64b b06be28 cf0e64b be48a45 b06be28 a17c8d3 b06be28 0e7d223 b06be28 cf0e64b dceb707 b3f93dc c06c25c b3f93dc c06c25c b3f93dc 5bef7be b3f93dc 5bef7be b3f93dc e0bb2f8 8ff02b6 e0bb2f8 f11f112 e0bb2f8 985c12f e0bb2f8 f11f112 b3f93dc 5bef7be b3f93dc 5bef7be 8683501 b3f93dc 5bef7be 8683501 b3f93dc 5bef7be b06be28 b3f93dc 5bef7be b3f93dc c06c25c b3f93dc e0bb2f8 14ff838 5bef7be 14ff838 5bef7be dd19a61 e0bb2f8 dd19a61 e0bb2f8 dd19a61 e0bb2f8 dd19a61 e0bb2f8 9dd19ac e0bb2f8 5bef7be 8ff02b6 5bef7be e0bb2f8 14ff838 ce0bf87 14ff838 5bef7be 14ff838 ce0bf87 14ff838 730fc8a 8ff02b6 730fc8a 8ff02b6 730fc8a 77ec39d 14ff838 ce0bf87 14ff838 ce0bf87 730fc8a 14ff838 8683501 b06be28 14ff838 8683501 14ff838 ce0bf87 77ec39d e0bb2f8 730fc8a e0bb2f8 730fc8a ce0bf87 e0bb2f8 d65ebfd e0bb2f8 730fc8a ce0bf87 730fc8a e0bb2f8 14ff838 730fc8a 8ff02b6 865d4d1 730fc8a 865d4d1 8ff02b6 865d4d1 8ff02b6 865d4d1 8ff02b6 865d4d1 8ff02b6 865d4d1 8ff02b6 865d4d1 77ec39d 865d4d1 730fc8a 865d4d1 8ff02b6 865d4d1 8ff02b6 865d4d1 8ff02b6 865d4d1 730fc8a 77ec39d db10e15 730fc8a db10e15 8ff02b6 db10e15 8ff02b6 db10e15 730fc8a 1c54dab 8ff02b6 1c54dab 8ff02b6 1c54dab 8ff02b6 1c54dab 8ff02b6 1c54dab 8ff02b6 1c54dab 8ff02b6 1c54dab 8ff02b6 1c54dab 8ff02b6 1c54dab 8ff02b6 1c54dab 8ff02b6 1c54dab 8ff02b6 1c54dab 8ff02b6 1c54dab 14ff838 5bef7be 14ff838 5bef7be 14ff838 5bef7be 14ff838 b3f93dc 14ff838 5bef7be b3f93dc 5bef7be 8683501 b06be28 5bef7be 8683501 14ff838 5bef7be 72da6df 14ff838 8ff02b6 14ff838 5bef7be 14ff838 ce0bf87 14ff838 b06be28 14ff838 5bef7be 14ff838 5bef7be 14ff838 b3f93dc 14ff838 5bef7be b3f93dc 5bef7be 14ff838 5bef7be 14ff838 ce0bf87 14ff838 5bef7be 14ff838 5bef7be 14ff838 5bef7be 14ff838 5bef7be 14ff838 5bef7be 14ff838 5bef7be 14ff838 5bef7be 14ff838 5bef7be 14ff838 710a0f7 14ff838 710a0f7 ed4ae7d 14ff838 710a0f7 14ff838 710a0f7 14ff838 710a0f7 14ff838 710a0f7 14ff838 710a0f7 14ff838 710a0f7 14ff838 710a0f7 14ff838 710a0f7 14ff838 710a0f7 b3f93dc 14ff838 5bef7be e0bb2f8 5bef7be 14ff838 db10e15 14ff838 5bef7be b3f93dc 5bef7be 14ff838 5bef7be 14ff838 5bef7be cf0e64b 5bef7be 14ff838 5bef7be 14ff838 b3f93dc 14ff838 730fc8a 14ff838 5bef7be 14ff838 5bef7be 14ff838 cf0e64b 5bef7be 14ff838 5bef7be 14ff838 5bef7be 14ff838 5bef7be 14ff838 ce0bf87 14ff838 5bef7be 14ff838 5bef7be 14ff838 b3f93dc 14ff838 730fc8a 14ff838 5bef7be 14ff838 5bef7be 14ff838 cf0e64b 5bef7be 14ff838 5bef7be 14ff838 5bef7be 14ff838 5bef7be b3f93dc 5bef7be 8ff02b6 5bef7be b3f93dc 14ff838 5bef7be 14ff838 db10e15 14ff838 cf0e64b 14ff838 5bef7be 14ff838 5bef7be 14ff838 5bef7be 14ff838 5bef7be 14ff838 b3f93dc 14ff838 730fc8a 14ff838 5bef7be 14ff838 5bef7be 14ff838 cf0e64b 5bef7be 14ff838 5bef7be 14ff838 5bef7be 710a0f7 14ff838 710a0f7 14ff838 5bef7be 14ff838 5bef7be 14ff838 5bef7be 14ff838 5bef7be 14ff838 b3f93dc 14ff838 730fc8a 14ff838 5bef7be 14ff838 5bef7be 14ff838 cf0e64b 5bef7be 14ff838 5bef7be b3f93dc 5bef7be b3f93dc 14ff838 5bef7be 14ff838 db10e15 14ff838 cf0e64b 14ff838 8683501 14ff838 5bef7be 14ff838 730fc8a 5bef7be 14ff838 5bef7be 14ff838 cf0e64b 5bef7be 14ff838 5bef7be 14ff838 5bef7be 14ff838 5bef7be 710a0f7 db10e15 710a0f7 db10e15 14ff838 5bef7be 14ff838 5bef7be 14ff838 5bef7be 14ff838 5bef7be 14ff838 710a0f7 14ff838 5bef7be 14ff838 710a0f7 14ff838 5bef7be 14ff838 730fc8a 14ff838 5bef7be 14ff838 5bef7be 14ff838 cf0e64b 5bef7be 14ff838 5bef7be 14ff838 5bef7be 14ff838 5bef7be 14ff838 5bef7be 14ff838 5bef7be 14ff838 5bef7be 14ff838 5bef7be b3f93dc 14ff838 b3f93dc 5bef7be db10e15 5bef7be 14ff838 5bef7be cf0e64b 5bef7be 14ff838 b3f93dc 8ff02b6 b3f93dc 8ff02b6 b3f93dc 14ff838 b3f93dc 14ff838 b3f93dc 5bef7be b3f93dc 14ff838 5bef7be b3f93dc 5bef7be 14ff838 5bef7be 14ff838 5bef7be 710a0f7 14ff838 5bef7be 14ff838 5bef7be ce0bf87 5bef7be b3f93dc 14ff838 b3f93dc 5bef7be 14ff838 5bef7be ce0bf87 5bef7be 14ff838 ce0bf87 5bef7be 14ff838 ce0bf87 5bef7be 14ff838 5bef7be ce0bf87 5bef7be b3f93dc 14ff838 b3f93dc 8683501 b06be28 b3f93dc db10e15 b3f93dc db10e15 b3f93dc 5bef7be 14ff838 018fa46 5bef7be 018fa46 9080454 8683501 9080454 8683501 b06be28 8683501 5bef7be b3f93dc 14ff838 5bef7be 14ff838 5bef7be 14ff838 5bef7be 14ff838 214b3cd 14ff838 5bef7be 14ff838 5bef7be 14ff838 5bef7be 14ff838 5bef7be b06be28 5bef7be 3b740ff 5bef7be 14ff838 5bef7be 14ff838 5bef7be 14ff838 5bef7be cf0e64b b06be28 b3f93dc cf0e64b b3f93dc 5bef7be 14ff838 5bef7be 14ff838 5bef7be 14ff838 5bef7be 14ff838 5bef7be 14ff838 5bef7be 14ff838 5bef7be 14ff838 b3f93dc 8ff02b6 b3f93dc 14ff838 5bef7be b3f93dc 14ff838 b3f93dc 14ff838 b3f93dc c06c25c b3f93dc 5bef7be b3f93dc 14ff838 b3f93dc 5bef7be b3f93dc 14ff838 b3f93dc ce87091 5bef7be b3f93dc 5bef7be b3f93dc ce87091 b3f93dc 40759f1 5bef7be 3b740ff 5bef7be 2223e9c 14ff838 e0bb2f8 5bef7be e6769b1 5bef7be db10e15 5bef7be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 |
import gradio as gr
import requests
import json
import os
import asyncio
from datetime import datetime
from typing import Dict, List, Any, Optional, Tuple
from dotenv import load_dotenv
import time
import re
from collections import Counter
import threading
import queue
import uuid
from gradio_consilium_roundtable import consilium_roundtable
from research_tools.base_tool import BaseTool
from openfloor_helper.OpenFloorResearchAgent import OpenFloorResearchAgent
from openfloor_helper.OpenFloorAgentServer import OpenFloorAgentServer
from openfloor_helper.OpenFloorManager import OpenFloorManager
from openfloor import *
from openfloor.envelope import *
from enhanced_search_functions import ENHANCED_SEARCH_FUNCTIONS
# Load environment variables
load_dotenv()
# API Configuration - These will be updated by UI if needed
MISTRAL_API_KEY = os.getenv("MISTRAL_API_KEY")
SAMBANOVA_API_KEY = os.getenv("SAMBANOVA_API_KEY")
MODERATOR_MODEL = os.getenv("MODERATOR_MODEL", "mistral")
# Session-based storage for isolated discussions
user_sessions: Dict[str, Dict] = {}
# Model Images
avatar_images = {
"Qwen3-32B": "https://cdn-avatars.huggingface.co/v1/production/uploads/620760a26e3b7210c2ff1943/-s1gyJfvbE1RgO5iBeNOi.png",
"DeepSeek-R1": "https://logosandtypes.com/wp-content/uploads/2025/02/deepseek.svg",
"Mistral Large": "https://logosandtypes.com/wp-content/uploads/2025/02/mistral-ai.svg",
"Meta-Llama-3.3-70B-Instruct": "https://registry.npmmirror.com/@lobehub/icons-static-png/1.46.0/files/dark/meta-color.png",
"arXiv Research Agent": "https://public.boxcloud.com/api/2.0/internal_files/804104772302/versions/860288648702/representations/png_paged_2048x2048/content/1.png?access_token=1!r4Iuj5vkFMywOMAPQ4M6QIr3eqkJ6CjlMzh77DAkRcGdVRvzG-Xh6GFZz_JkzoJuO9yRR5cQ6cs5VvUolhHxNM6JdliJ2JOi9VWm-BbB5C63s0_7bpaQYLFAJmLnlG2RzhX74_bK4XS-csGP8CI-9tVa6LUcrCNTKJmc-yddIepopLMZLqJ34h0nu69Yt0Not4yDErBTk2jWaneTBdhdXErOhCs9cz4HK-itpCfdL3Lze9oAjf6o8EVWRn6R0YPw95trQl7IziLd1P78BFuVaDjborvhs_yWgcw0uxXNZz_8WZh5z5NOvDq6sMo0uYGWiJ_g1JWyiaDJpsWBlHRiRwwF5FZLsVSXRz6dXD1MtKyOPs8J6CBYkGisicIysuiPsT1Kcyrgm-3jH1-tanOVs66TCmnGNbSYH_o_-x9iOdkI8rEL7-l2i5iHn22i-q8apZTOd_eQp22UCsmUBJQig7att_AwVKasmqOegDZHO2h1b_vSjeZ8ISBcg8i7fnFdF9Ej35s6OFkV5IyZtMzbAKdRlwdt5lupsshO5FCByR0kau9PVIiwJilI0t7zYsJtSXzVxVQEyEPuLTAlJJI7827NoNA1OSojaPsfhFrW4jEfJIgMoxNl_vFfZvLBmAA7Pk1SeaN7J0ebDji-bDbwqlPadp7JOB3s2Six11fm4Ss.&shared_link=https%3A%2F%2Fcornell.app.box.com%2Fv%2Farxiv-logomark-small-png&box_client_name=box-content-preview&box_client_version=3.7.0",
"GitHub Research Agent": "https://upload.wikimedia.org/wikipedia/commons/thumb/c/c2/GitHub_Invertocat_Logo.svg/250px-GitHub_Invertocat_Logo.svg.png",
"SEC EDGAR Research Agent": "https://upload.wikimedia.org/wikipedia/commons/thumb/1/1c/Seal_of_the_United_States_Securities_and_Exchange_Commission.svg/250px-Seal_of_the_United_States_Securities_and_Exchange_Commission.svg.png",
"Web Search Research Agent": "https://duckduckgo.com/static-assets/favicons/DDG-iOS-icon_76x76.png",
"Wikipedia Research Agent": "https://upload.wikimedia.org/wikipedia/commons/thumb/8/80/Wikipedia-logo-v2.svg/103px-Wikipedia-logo-v2.svg.png"
}
def get_session_id(request: gr.Request = None) -> str:
"""Generate or retrieve session ID"""
if request and hasattr(request, 'session_hash'):
return request.session_hash
return str(uuid.uuid4())
def get_or_create_session_state(session_id: str) -> Dict:
"""Get or create isolated session state"""
if session_id not in user_sessions:
user_sessions[session_id] = {
"roundtable_state": {
"participants": [],
"messages": [],
"currentSpeaker": None,
"thinking": [],
"showBubbles": []
},
"discussion_log": [],
"final_answer": "",
"api_keys": {
"mistral": None,
"sambanova": None
}
}
return user_sessions[session_id]
def update_session_api_keys(mistral_key, sambanova_key, session_id_state, request: gr.Request = None):
"""Update API keys for THIS SESSION ONLY"""
session_id = get_session_id(request) if not session_id_state else session_id_state
session = get_or_create_session_state(session_id)
status_messages = []
# Update keys for THIS SESSION
if mistral_key.strip():
session["api_keys"]["mistral"] = mistral_key.strip()
status_messages.append("β
Mistral API key saved for this session")
elif MISTRAL_API_KEY: # Fall back to env var
session["api_keys"]["mistral"] = MISTRAL_API_KEY
status_messages.append("β
Using Mistral API key from environment")
else:
status_messages.append("β No Mistral API key available")
if sambanova_key.strip():
session["api_keys"]["sambanova"] = sambanova_key.strip()
status_messages.append("β
SambaNova API key saved for this session")
elif SAMBANOVA_API_KEY:
session["api_keys"]["sambanova"] = SAMBANOVA_API_KEY
status_messages.append("β
Using SambaNova API key from environment")
else:
status_messages.append("β No SambaNova API key available")
return " | ".join(status_messages), session_id
class VisualConsensusEngine:
def __init__(self, moderator_model: str = None, update_callback=None, session_id: str = None):
self.moderator_model = moderator_model or MODERATOR_MODEL
self.update_callback = update_callback
self.session_id = session_id
# Initialize OpenFloor Manager FIRST
self.floor_manager = OpenFloorManager(port=7860)
self.floor_manager.set_visual_callback(self.update_visual_state)
# Create OpenFloor research agents
from research_tools import WebSearchTool, WikipediaSearchTool, ArxivSearchTool, GitHubSearchTool, SECSearchTool
self.research_agents = {
'web_search': OpenFloorResearchAgent(WebSearchTool(), port=8001),
'wikipedia': OpenFloorResearchAgent(WikipediaSearchTool(), port=8002),
'arxiv': OpenFloorResearchAgent(ArxivSearchTool(), port=8003),
'github': OpenFloorResearchAgent(GitHubSearchTool(), port=8004),
'sec_edgar': OpenFloorResearchAgent(SECSearchTool(), port=8005)
}
# Start research agents and register with floor manager
self.start_openfloor_research_agents()
# Create a persistent conversation for this session
self.conversation_id = self.floor_manager.create_conversation([])
# Available research agents for discovery
self.available_research_agents = list(self.research_agents.keys())
# Get session-specific keys or fall back to global
session = get_or_create_session_state(session_id) if session_id else {"api_keys": {}}
session_keys = session.get("api_keys", {})
mistral_key = session_keys.get("mistral") or MISTRAL_API_KEY
sambanova_key = session_keys.get("sambanova") or SAMBANOVA_API_KEY
self.models = {
'mistral': {
'name': 'Mistral Large',
'api_key': mistral_key,
'available': bool(mistral_key)
},
'sambanova_deepseek': {
'name': 'DeepSeek-R1',
'api_key': sambanova_key,
'available': bool(sambanova_key)
},
'sambanova_llama': {
'name': 'Meta-Llama-3.3-70B-Instruct',
'api_key': sambanova_key,
'available': bool(sambanova_key)
},
'sambanova_qwen': {
'name': 'Qwen3-32B',
'api_key': sambanova_key,
'available': bool(sambanova_key)
}
}
# Store session keys for API calls
self.session_keys = {
'mistral': mistral_key,
'sambanova': sambanova_key
}
# Register AI experts with floor manager
self.register_ai_experts()
# Start floor manager service
self.floor_manager.start_floor_manager_service()
# PROFESSIONAL: Strong, expert role definitions matched to decision protocols
self.roles = {
'standard': "Provide expert analysis with clear reasoning and evidence.",
'expert_advocate': "You are a PASSIONATE EXPERT advocating for your specialized position. Present compelling evidence with conviction.",
'critical_analyst': "You are a RIGOROUS CRITIC. Identify flaws, risks, and weaknesses in arguments with analytical precision.",
'strategic_advisor': "You are a STRATEGIC ADVISOR. Focus on practical implementation, real-world constraints, and actionable insights.",
'research_specialist': "You are a RESEARCH EXPERT with deep domain knowledge. Provide authoritative analysis and evidence-based insights.",
'innovation_catalyst': "You are an INNOVATION EXPERT. Challenge conventional thinking and propose breakthrough approaches."
}
# PROFESSIONAL: Different prompt styles based on decision protocol
self.protocol_styles = {
'consensus': {
'intensity': 'collaborative',
'goal': 'finding common ground',
'language': 'respectful but rigorous'
},
'majority_voting': {
'intensity': 'competitive',
'goal': 'winning the argument',
'language': 'passionate advocacy'
},
'weighted_voting': {
'intensity': 'analytical',
'goal': 'demonstrating expertise',
'language': 'authoritative analysis'
},
'ranked_choice': {
'intensity': 'comprehensive',
'goal': 'exploring all options',
'language': 'systematic evaluation'
},
'unanimity': {
'intensity': 'diplomatic',
'goal': 'unanimous agreement',
'language': 'bridge-building dialogue'
}
}
def start_openfloor_research_agents(self):
"""Start research agents and register them with the floor manager"""
agent_ports = {
'web_search': 8001,
'wikipedia': 8002,
'arxiv': 8003,
'github': 8004,
'sec_edgar': 8005
}
self.agent_servers = {}
for agent_name, port in agent_ports.items():
agent = self.research_agents[agent_name]
server = OpenFloorAgentServer(agent, port)
if server.start_server():
self.agent_servers[agent_name] = {
'server': server,
'port': port,
'url': f"http://localhost:{port}",
'manifest_url': f"http://localhost:{port}/openfloor/manifest"
}
# Register with floor manager
manifest = agent.get_manifest()
self.floor_manager.register_agent(manifest, f"http://localhost:{port}")
# Small delay between starting servers
time.sleep(0.5)
def register_ai_experts(self):
"""Register AI expert models as OpenFloor agents"""
for model_key, model_info in self.models.items():
if model_info['available']:
# Create manifest for AI expert
expert_manifest = Manifest(
identification=Identification(
speakerUri=f"tag:consilium.ai,2025:{model_key}",
serviceUrl=f"internal://consilium/{model_key}", # Required parameter
conversationalName=model_info['name'],
role="AI Expert",
organization="Consilium Expert Panel",
synopsis=f"Expert AI model: {model_info['name']}"
),
capabilities=[
Capability(
keyphrases=["analysis", "expertise", "reasoning", "decision"],
descriptions=[f"Expert analysis and reasoning by {model_info['name']}"],
languages=["en-us"]
)
]
)
# Register with floor manager (no URL since these are internal)
self.floor_manager.register_agent(expert_manifest, "internal://ai-expert")
def update_visual_state(self, state_update: Dict[str, Any]):
"""Update the visual roundtable state for this session"""
if self.update_callback:
self.update_callback(state_update)
def send_research_request_via_floor(self, function_name: str, query: str, requesting_expert: str) -> str:
"""Send research request through proper OpenFloor messaging"""
# Map function to research agent
function_to_agent = {
"search_web": "web_search",
"search_wikipedia": "wikipedia",
"search_academic": "arxiv",
"search_technology_trends": "github",
"search_financial_data": "sec_edgar"
}
if function_name not in function_to_agent:
return f"Unknown research function: {function_name}"
agent_name = function_to_agent[function_name]
research_agent = self.research_agents[agent_name]
target_speaker_uri = research_agent.manifest.identification.speakerUri
requesting_speaker_uri = f"tag:consilium.ai,2025:{requesting_expert}"
# Step 1: Invite research agent to conversation
success = self.floor_manager.invite_agent_to_conversation(
self.conversation_id,
target_speaker_uri,
requesting_speaker_uri
)
if not success:
return f"Failed to invite {agent_name} to conversation"
# Step 2: Send research request via floor manager
research_dialog = DialogEvent(
speakerUri=requesting_speaker_uri,
features={"text": TextFeature(values=[query])}
)
research_envelope = Envelope(
conversation=Conversation(id=self.conversation_id),
sender=Sender(speakerUri=requesting_speaker_uri),
events=[
UtteranceEvent(
dialogEvent=research_dialog,
to=To(speakerUri=target_speaker_uri)
)
]
)
# Route through floor manager
routing_success = self.floor_manager.route_message(research_envelope)
if not routing_success:
return f"Failed to route research request to {agent_name}"
# Step 3: Wait for response and collect result
# In a real implementation, this would be asynchronous
# For now, we'll use the direct research call as fallback
try:
result = research_agent.tool.search(query)
# Step 4: Send result back through floor as ContextEvent
result_envelope = Envelope(
conversation=Conversation(id=self.conversation_id),
sender=Sender(speakerUri=target_speaker_uri),
events=[
ContextEvent(
parameters={
"research_function": function_name,
"query": query,
"requesting_expert": requesting_expert,
"result": result
}
)
]
)
self.floor_manager.route_message(result_envelope)
# Step 5: Remove research agent from conversation
self.dismiss_research_agent_via_floor(agent_name, requesting_expert)
return result
except Exception as e:
error_msg = f"Research error: {str(e)}"
# Send error through floor
error_envelope = Envelope(
conversation=Conversation(id=self.conversation_id),
sender=Sender(speakerUri=target_speaker_uri),
events=[
ContextEvent(
parameters={
"research_error": error_msg,
"function": function_name,
"query": query
}
)
]
)
self.floor_manager.route_message(error_envelope)
self.dismiss_research_agent_via_floor(agent_name, requesting_expert)
return error_msg
def dismiss_research_agent_via_floor(self, agent_name: str, requesting_expert: str):
"""Properly dismiss research agent via OpenFloor messaging"""
research_agent = self.research_agents[agent_name]
target_speaker_uri = research_agent.manifest.identification.speakerUri
# Send bye event
bye_envelope = Envelope(
conversation=Conversation(id=self.conversation_id),
sender=Sender(speakerUri=target_speaker_uri),
events=[
ByeEvent(
parameters={
"message": "Research task completed. Leaving conversation."
}
)
]
)
self.floor_manager.route_message(bye_envelope)
# Remove from conversation participants
if self.conversation_id in self.floor_manager.active_conversations:
conversation_state = self.floor_manager.active_conversations[self.conversation_id]
if target_speaker_uri in conversation_state['participants']:
conversation_state['participants'].remove(target_speaker_uri)
def handle_function_calls(self, completion, original_prompt: str, calling_model: str) -> str:
"""UNIFIED function call handler with enhanced research capabilities"""
# Check if completion is valid
if not completion or not completion.choices or len(completion.choices) == 0:
print(f"Invalid completion object for {calling_model}")
return "Analysis temporarily unavailable - invalid API response"
message = completion.choices[0].message
# If no function calls, return regular response
if not hasattr(message, 'tool_calls') or not message.tool_calls:
content = message.content
if isinstance(content, list):
text_parts = []
for part in content:
if isinstance(part, dict) and 'text' in part:
text_parts.append(part['text'])
elif isinstance(part, str):
text_parts.append(part)
return ' '.join(text_parts) if text_parts else "Analysis completed"
elif isinstance(content, str):
return content
else:
return str(content) if content else "Analysis completed"
# Get the calling model's name for UI display
calling_model_name = self.models[calling_model]['name']
# Process each function call
messages = [
{"role": "user", "content": original_prompt},
{
"role": "assistant",
"content": message.content or "",
"tool_calls": message.tool_calls
}
]
for tool_call in message.tool_calls:
try:
function_name = tool_call.function.name
arguments = json.loads(tool_call.function.arguments)
query_param = arguments.get("query") or arguments.get("topic") or arguments.get("technology") or arguments.get("company")
if query_param:
session = get_or_create_session_state(self.session_id)
current_state = session["roundtable_state"]
all_messages = list(current_state.get("messages", []))
# Add request message to the CALLING MODEL (Mistral)
request_message = {
"speaker": calling_model_name,
"text": f"π **Research Request**: {function_name.replace('_', ' ').title()}\nπ Query: \"{query_param}\"\nβ³ Waiting for research results...",
"type": "research_request"
}
all_messages.append(request_message)
existing_bubbles = list(current_state.get("showBubbles", []))
if calling_model_name not in existing_bubbles:
existing_bubbles.append(calling_model_name)
self.update_visual_state({
"participants": current_state.get("participants", []),
"messages": all_messages,
"currentSpeaker": calling_model_name,
"thinking": [],
"showBubbles": existing_bubbles
})
time.sleep(1)
result = self._execute_research_function(function_name, arguments, calling_model_name)
# Ensure result is a string
if not isinstance(result, str):
result = str(result)
# Log the research activity (with access to session log function)
session = get_or_create_session_state(self.session_id)
def session_log_function(event_type, speaker="", content="", **kwargs):
session["discussion_log"].append({
'type': event_type,
'speaker': speaker,
'content': content,
'timestamp': datetime.now().strftime('%H:%M:%S'),
**kwargs
})
# Add function result to conversation
messages.append({
"role": "tool",
"tool_call_id": tool_call.id,
"content": result
})
except Exception as e:
print(f"Error processing tool call: {str(e)}")
messages.append({
"role": "tool",
"tool_call_id": tool_call.id,
"content": f"Research error: {str(e)}"
})
continue
# Continue conversation with research results integrated
try:
from openai import OpenAI
if calling_model == 'mistral':
client = OpenAI(
base_url="https://api.mistral.ai/v1",
api_key=self.session_keys.get('mistral')
)
model_name = 'mistral-large-latest'
else:
client = OpenAI(
base_url="https://api.sambanova.ai/v1",
api_key=self.session_keys.get('sambanova')
)
model_mapping = {
'sambanova_deepseek': 'DeepSeek-R1',
'sambanova_llama': 'Meta-Llama-3.3-70B-Instruct',
'sambanova_qwen': 'Qwen3-32B'
}
model_name = model_mapping.get(calling_model, 'Meta-Llama-3.3-70B-Instruct')
final_completion = client.chat.completions.create(
model=model_name,
messages=messages,
max_tokens=1000,
temperature=0.7
)
if final_completion and final_completion.choices and len(final_completion.choices) > 0:
final_content = final_completion.choices[0].message.content
if isinstance(final_content, list):
text_parts = []
for part in final_content:
if isinstance(part, dict) and 'text' in part:
text_parts.append(part['text'])
elif isinstance(part, str):
text_parts.append(part)
return ' '.join(text_parts) if text_parts else "Analysis completed with research integration."
elif isinstance(final_content, str):
return final_content
else:
return str(final_content) if final_content else "Analysis completed with research integration."
else:
return message.content or "Analysis completed with research integration."
except Exception as e:
print(f"Error in follow-up completion for {calling_model}: {str(e)}")
return message.content or "Analysis completed with research integration."
def _execute_research_function(self, function_name: str, arguments: dict, requesting_model_name: str = None) -> str:
"""Execute research function using proper OpenFloor messaging"""
query_param = arguments.get("query") or arguments.get("topic") or arguments.get("technology") or arguments.get("company")
if not query_param:
return "No query parameter found in research request"
# Show research starting
self.show_research_starting(function_name, query_param)
try:
# Use OpenFloor messaging for research
result = self.send_research_request_via_floor(
function_name,
query_param,
requesting_model_name or 'unknown'
)
# Show research complete
self.show_research_complete(function_name, query_param, len(result), requesting_model_name)
return result
except Exception as e:
error_msg = str(e)
self.show_research_error(function_name, query_param, error_msg, requesting_model_name)
return f"OpenFloor research error: {error_msg}"
def show_research_starting(self, function: str, query: str):
"""Invite specific research agent to join conversation"""
function_to_agent = {
"search_web": "web_search",
"search_wikipedia": "wikipedia",
"search_academic": "arxiv",
"search_technology_trends": "github",
"search_financial_data": "sec_edgar"
}
if function in function_to_agent:
agent_name = function_to_agent[function]
# Use the existing invite method
self.invite_research_agent(agent_name, "current_conversation", "AI Expert")
# Add the query information
research_agent = self.research_agents[agent_name]
agent_display_name = research_agent.manifest.identification.conversationalName
session = get_or_create_session_state(self.session_id)
current_state = session["roundtable_state"]
all_messages = list(current_state.get("messages", []))
# Add research starting message
start_message = {
"speaker": agent_display_name,
"text": f"π **Starting Research**\nπ Query: \"{query}\"\nβ³ Connecting to data sources...",
"type": "research_starting"
}
all_messages.append(start_message)
existing_bubbles = list(current_state.get("showBubbles", []))
self.update_visual_state({
"participants": current_state.get("participants", []),
"messages": all_messages,
"currentSpeaker": agent_display_name,
"thinking": [],
"showBubbles": existing_bubbles
})
def show_research_complete(self, function: str, query: str, result_length: int, requesting_model_name: str = None):
"""Show research complete and dismiss the specific agent"""
function_to_agent = {
"search_web": "web_search",
"search_wikipedia": "wikipedia",
"search_academic": "arxiv",
"search_technology_trends": "github",
"search_financial_data": "sec_edgar"
}
if function in function_to_agent:
agent_name = function_to_agent[function]
research_agent = self.research_agents[agent_name]
agent_display_name = research_agent.manifest.identification.conversationalName
session = get_or_create_session_state(self.session_id)
current_state = session["roundtable_state"]
all_messages = list(current_state.get("messages", []))
# Show completion message
complete_message = {
"speaker": agent_display_name,
"text": f"β
**Research Complete**\nπ {result_length:,} characters analyzed\nπ― Research delivered to {requesting_model_name}",
"type": "research_complete"
}
all_messages.append(complete_message)
existing_bubbles = list(current_state.get("showBubbles", []))
self.update_visual_state({
"participants": current_state.get("participants", []),
"messages": all_messages,
"currentSpeaker": requesting_model_name,
"thinking": [],
"showBubbles": existing_bubbles
})
time.sleep(2)
# Use the existing dismiss method
self.dismiss_research_agent(agent_name, "current_conversation")
def show_research_error(self, function: str, query: str, error: str, requesting_model_name: str = None):
"""Show research error from the specific agent and dismiss it"""
function_to_agent = {
"search_web": "web_search",
"search_wikipedia": "wikipedia",
"search_academic": "arxiv",
"search_technology_trends": "github",
"search_financial_data": "sec_edgar"
}
if function in function_to_agent:
agent_name = function_to_agent[function]
research_agent = self.research_agents[agent_name]
agent_display_name = research_agent.manifest.identification.conversationalName
session = get_or_create_session_state(self.session_id)
current_state = session["roundtable_state"]
all_messages = list(current_state.get("messages", []))
# Show error message from the specific agent
error_message = {
"speaker": agent_display_name,
"text": f"β **Research Error**\nπ¬ {function.replace('_', ' ').title()}\nπ Query: \"{query}\"\nβ οΈ Error: {error}\nπ Research failed, returning to discussion",
"type": "research_error"
}
all_messages.append(error_message)
existing_bubbles = list(current_state.get("showBubbles", []))
self.update_visual_state({
"participants": current_state.get("participants", []),
"messages": all_messages,
"currentSpeaker": requesting_model_name,
"thinking": [],
"showBubbles": existing_bubbles
})
time.sleep(1)
# Dismiss the research agent since research failed
self.dismiss_research_agent(agent_name, "current_conversation")
def invite_research_agent(self, agent_name: str, conversation_id: str, requesting_expert: str):
"""Invite a research agent to join the conversation visually"""
if agent_name in self.research_agents:
research_agent = self.research_agents[agent_name]
# Research agent joins the conversation
research_agent.join_conversation(conversation_id)
# Update visual state to show the research agent joining
session = get_or_create_session_state(self.session_id)
current_state = session["roundtable_state"]
# Add research agent to participants if not already there
participants = list(current_state.get("participants", []))
agent_display_name = research_agent.manifest.identification.conversationalName
if agent_display_name not in participants:
participants.append(agent_display_name)
# Show join message
all_messages = list(current_state.get("messages", []))
join_message = {
"speaker": agent_display_name,
"text": f"π **Joined Conversation**\nInvited by: {requesting_expert}\nSpecialty: {research_agent.manifest.identification.synopsis}\nReady to provide research assistance.",
"type": "agent_join"
}
all_messages.append(join_message)
# Update visual state
existing_bubbles = list(current_state.get("showBubbles", []))
if agent_display_name not in existing_bubbles:
existing_bubbles.append(agent_display_name)
self.update_visual_state({
"participants": participants,
"messages": all_messages,
"currentSpeaker": None,
"thinking": [],
"showBubbles": existing_bubbles
})
return True
return False
def dismiss_research_agent(self, agent_name: str, conversation_id: str):
"""Remove a research agent from the conversation visually"""
if agent_name in self.research_agents:
research_agent = self.research_agents[agent_name]
# Research agent leaves the conversation
research_agent.leave_conversation(conversation_id)
# Update visual state
session = get_or_create_session_state(self.session_id)
current_state = session["roundtable_state"]
agent_display_name = research_agent.manifest.identification.conversationalName
# Show leave message
all_messages = list(current_state.get("messages", []))
leave_message = {
"speaker": agent_display_name,
"text": f"π **Leaving Conversation**\nResearch assistance complete. Agent dismissed.",
"type": "agent_leave"
}
all_messages.append(leave_message)
# Remove from bubbles but keep in participants list for history
existing_bubbles = list(current_state.get("showBubbles", []))
if agent_display_name in existing_bubbles:
existing_bubbles.remove(agent_display_name)
self.update_visual_state({
"participants": current_state.get("participants", []),
"messages": all_messages,
"currentSpeaker": None,
"thinking": [],
"showBubbles": existing_bubbles
})
return True
return False
def call_model(self, model: str, prompt: str, context: str = "") -> Optional[str]:
"""Enhanced model calling with native function calling support"""
if not self.models[model]['available']:
print(f"Model {model} not available - missing API key")
return None
full_prompt = f"{context}\n\n{prompt}" if context else prompt
try:
if model == 'mistral':
return self._call_mistral(full_prompt)
elif model.startswith('sambanova_'):
return self._call_sambanova(model, full_prompt)
except Exception as e:
print(f"Error calling {model}: {str(e)}")
return None
return None
def _call_sambanova(self, model: str, prompt: str) -> Optional[str]:
"""Enhanced SambaNova API call with native function calling"""
api_key = self.session_keys.get('sambanova')
if not api_key:
print(f"No SambaNova API key available for {model}")
return None
try:
from openai import OpenAI
client = OpenAI(
base_url="https://api.sambanova.ai/v1",
api_key=api_key
)
model_mapping = {
'sambanova_deepseek': 'DeepSeek-R1',
'sambanova_llama': 'Meta-Llama-3.3-70B-Instruct',
'sambanova_qwen': 'Qwen3-32B'
}
sambanova_model = model_mapping.get(model, 'Meta-Llama-3.3-70B-Instruct')
print(f"Calling SambaNova model: {sambanova_model}")
# Check if model supports function calling (Updated list)
supports_functions = sambanova_model in [
'Meta-Llama-3.1-8B-Instruct',
'Meta-Llama-3.1-405B-Instruct',
'Meta-Llama-3.3-70B-Instruct'
]
if supports_functions:
completion = client.chat.completions.create(
model=sambanova_model,
messages=[{"role": "user", "content": prompt}],
tools=ENHANCED_SEARCH_FUNCTIONS,
tool_choice="auto",
max_tokens=1000,
temperature=0.7
)
else:
# Qwen3-32B and other models that don't support function calling
print(f"Model {sambanova_model} doesn't support function calling - using regular completion")
completion = client.chat.completions.create(
model=sambanova_model,
messages=[{"role": "user", "content": prompt}],
max_tokens=1000,
temperature=0.7
)
# Handle function calls if present (only for models that support it)
if supports_functions:
return self.handle_function_calls(completion, prompt, model)
else:
# For models without function calling, return response directly
if completion and completion.choices and len(completion.choices) > 0:
return completion.choices[0].message.content
else:
return None
except Exception as e:
print(f"Error calling SambaNova {model} ({sambanova_model}): {str(e)}")
# Print more detailed error info
import traceback
traceback.print_exc()
return None
def _call_mistral(self, prompt: str) -> Optional[str]:
"""Enhanced Mistral API call with native function calling"""
api_key = self.session_keys.get('mistral')
if not api_key:
print("No Mistral API key available")
return None
try:
from openai import OpenAI
client = OpenAI(
base_url="https://api.mistral.ai/v1",
api_key=api_key
)
print("Calling Mistral model: mistral-large-latest")
completion = client.chat.completions.create(
model='mistral-large-latest',
messages=[{"role": "user", "content": prompt}],
tools=ENHANCED_SEARCH_FUNCTIONS,
tool_choice="auto",
max_tokens=1000,
temperature=0.7
)
# Check if we got a valid response
if not completion or not completion.choices or len(completion.choices) == 0:
print("Invalid response structure from Mistral")
return None
# Handle function calls if present
return self.handle_function_calls(completion, prompt, 'mistral')
except Exception as e:
print(f"Error calling Mistral API: {str(e)}")
import traceback
traceback.print_exc()
return None
def assign_roles(self, models: List[str], role_assignment: str) -> Dict[str, str]:
"""Assign expert roles for rigorous analysis"""
if role_assignment == "none":
return {model: "standard" for model in models}
roles_to_assign = []
if role_assignment == "balanced":
roles_to_assign = ["expert_advocate", "critical_analyst", "strategic_advisor", "research_specialist"]
elif role_assignment == "specialized":
roles_to_assign = ["research_specialist", "strategic_advisor", "innovation_catalyst", "expert_advocate"]
elif role_assignment == "adversarial":
roles_to_assign = ["critical_analyst", "innovation_catalyst", "expert_advocate", "strategic_advisor"]
while len(roles_to_assign) < len(models):
roles_to_assign.append("standard")
model_roles = {}
for i, model in enumerate(models):
model_roles[model] = roles_to_assign[i % len(roles_to_assign)]
return model_roles
def _extract_confidence(self, response: str) -> float:
"""Extract confidence score from response"""
if not response or not isinstance(response, str):
return 5.0
confidence_match = re.search(r'Confidence:\s*(\d+(?:\.\d+)?)', response)
if confidence_match:
try:
return float(confidence_match.group(1))
except ValueError:
pass
return 5.0
def build_position_summary(self, all_messages: List[Dict], current_model: str, topology: str = "full_mesh") -> str:
"""Build expert position summary for analysis"""
current_model_name = self.models[current_model]['name']
if topology == "full_mesh":
# Show latest position from each expert
latest_positions = {}
for msg in all_messages:
if msg["speaker"] != current_model_name and not msg["speaker"].endswith("Research Agent"):
latest_positions[msg["speaker"]] = {
'text': msg['text'][:150] + "..." if len(msg['text']) > 150 else msg['text'],
'confidence': msg.get('confidence', 5)
}
summary = "EXPERT POSITIONS:\n"
for speaker, pos in latest_positions.items():
summary += f"β’ **{speaker}**: {pos['text']} (Confidence: {pos['confidence']}/10)\n"
elif topology == "star":
# Only show moderator's latest position
moderator_name = self.models[self.moderator_model]['name']
summary = "MODERATOR ANALYSIS:\n"
for msg in reversed(all_messages):
if msg["speaker"] == moderator_name:
text = msg['text'][:200] + "..." if len(msg['text']) > 200 else msg['text']
summary += f"β’ **{moderator_name}**: {text}\n"
break
elif topology == "ring":
# Only show previous expert's position
available_models = [model for model, info in self.models.items() if info['available']]
current_idx = available_models.index(current_model)
prev_idx = (current_idx - 1) % len(available_models)
prev_model_name = self.models[available_models[prev_idx]]['name']
summary = "PREVIOUS EXPERT:\n"
for msg in reversed(all_messages):
if msg["speaker"] == prev_model_name:
text = msg['text'][:200] + "..." if len(msg['text']) > 200 else msg['text']
summary += f"β’ **{prev_model_name}**: {text}\n"
break
return summary
def run_visual_consensus_session(self, question: str, discussion_rounds: int = 3,
decision_protocol: str = "consensus", role_assignment: str = "balanced",
topology: str = "full_mesh", moderator_model: str = "mistral",
log_function=None):
"""Run expert consensus with protocol-appropriate intensity and Research Agent integration"""
available_models = [model for model, info in self.models.items() if info['available']]
if not available_models:
return "β No AI models available"
# Add AI experts to the conversation
for model in available_models:
expert_speaker_uri = f"tag:consilium.ai,2025:{model}"
if self.conversation_id in self.floor_manager.active_conversations:
conversation_state = self.floor_manager.active_conversations[self.conversation_id]
if expert_speaker_uri not in conversation_state['participants']:
conversation_state['participants'].append(expert_speaker_uri)
# Send conversation start event through floor
start_envelope = Envelope(
conversation=Conversation(id=self.conversation_id),
sender=Sender(speakerUri="tag:consilium.ai,2025:session-manager"),
events=[
ContextEvent(
parameters={
"session_start": True,
"question": question,
"protocol": decision_protocol,
"participants": [self.models[model]['name'] for model in available_models]
}
)
]
)
self.floor_manager.route_message(start_envelope)
model_roles = self.assign_roles(available_models, role_assignment)
visual_participant_names = [self.models[model]['name'] for model in available_models]
# Get protocol-appropriate style
protocol_style = self.protocol_styles.get(decision_protocol, self.protocol_styles['consensus'])
# Use session-specific logging
def log_event(event_type: str, speaker: str = "", content: str = "", **kwargs):
if log_function:
log_function(event_type, speaker, content, **kwargs)
# Log the start
log_event('phase', content=f"π― Starting Expert Analysis: {question}")
log_event('phase', content=f"π Configuration: {len(available_models)} experts, {decision_protocol} protocol, {role_assignment} roles, {topology} topology")
self.update_visual_state({
"participants": visual_participant_names,
"messages": [],
"currentSpeaker": None,
"thinking": [],
"showBubbles": [],
"avatarImages": avatar_images
})
all_messages = []
log_event('phase', content="π Phase 1: Expert Initial Analysis")
for model in available_models:
# Log and set thinking state - PRESERVE BUBBLES
log_event('thinking', speaker=self.models[model]['name'])
session = get_or_create_session_state(self.session_id)
current_state = session["roundtable_state"]
existing_bubbles = list(current_state.get("showBubbles", []))
self.update_visual_state({
"participants": visual_participant_names,
"messages": all_messages,
"currentSpeaker": None,
"thinking": [self.models[model]['name']],
"showBubbles": existing_bubbles,
"avatarImages": avatar_images
})
time.sleep(1)
role = model_roles[model]
role_context = self.roles[role]
# PROTOCOL-ADAPTED: Prompt intensity based on decision protocol
if decision_protocol in ['majority_voting', 'ranked_choice']:
intensity_prompt = "π― CRITICAL DECISION"
action_prompt = "Take a STRONG, CLEAR position and defend it with compelling evidence"
stakes = "This decision has major consequences - be decisive and convincing"
elif decision_protocol == 'consensus':
intensity_prompt = "π€ COLLABORATIVE ANALYSIS"
action_prompt = "Provide thorough analysis while remaining open to other perspectives"
stakes = "Work toward building understanding and finding common ground"
else: # weighted_voting, unanimity
intensity_prompt = "π¬ EXPERT ANALYSIS"
action_prompt = "Provide authoritative analysis with detailed reasoning"
stakes = "Your expertise and evidence quality will determine influence"
prompt = f"""{intensity_prompt}: {question}
Your Role: {role_context}
ANALYSIS REQUIREMENTS:
- {action_prompt}
- {stakes}
- Use specific examples, data, and evidence
- If you need current information or research, you can search the web, Wikipedia, academic papers, technology trends, or financial data
- Maximum 200 words of focused analysis
- End with "Position: [YOUR CLEAR STANCE]" and "Confidence: X/10"
Provide your expert analysis:"""
# Log and set speaking state - PRESERVE BUBBLES
log_event('speaking', speaker=self.models[model]['name'])
# Calculate existing bubbles
existing_bubbles = list(current_state.get("showBubbles", []))
self.update_visual_state({
"participants": visual_participant_names,
"messages": all_messages,
"currentSpeaker": self.models[model]['name'],
"thinking": [],
"showBubbles": existing_bubbles,
"avatarImages": avatar_images
})
time.sleep(2)
# Call model - may trigger function calls and Research Agent activation
response = self.call_model(model, prompt)
# CRITICAL: Ensure response is a string
if response and not isinstance(response, str):
response = str(response)
if response:
confidence = self._extract_confidence(response)
message = {
"speaker": self.models[model]['name'],
"text": response,
"confidence": confidence,
"role": role
}
all_messages.append(message)
# Log the full response
log_event('message',
speaker=self.models[model]['name'],
content=response,
role=role,
confidence=confidence)
else:
# Handle failed API call gracefully
log_event('message',
speaker=self.models[model]['name'],
content="Analysis temporarily unavailable - API connection failed",
role=role,
confidence=0)
message = {
"speaker": self.models[model]['name'],
"text": "β οΈ Analysis temporarily unavailable - API connection failed. Please check your API keys and try again.",
"confidence": 0,
"role": role
}
all_messages.append(message)
# Update with new message
responded_speakers = list(set(msg["speaker"] for msg in all_messages if msg.get("speaker") and not msg["speaker"].endswith("Research Agent")))
self.update_visual_state({
"participants": visual_participant_names,
"messages": all_messages,
"currentSpeaker": None,
"thinking": [],
"showBubbles": responded_speakers,
"avatarImages": avatar_images
})
time.sleep(2) # Longer pause to see the response
# Phase 2: Rigorous discussion rounds
if discussion_rounds > 0:
log_event('phase', content=f"π¬ Phase 2: Expert Discussion ({discussion_rounds} rounds)")
for round_num in range(discussion_rounds):
log_event('phase', content=f"π Expert Round {round_num + 1}")
for model in available_models:
# Log thinking with preserved bubbles
log_event('thinking', speaker=self.models[model]['name'])
existing_bubbles = list(current_state.get("showBubbles", []))
self.update_visual_state({
"participants": visual_participant_names,
"messages": all_messages,
"currentSpeaker": None,
"thinking": [self.models[model]['name']],
"showBubbles": existing_bubbles,
"avatarImages": avatar_images
})
time.sleep(1)
# Build expert position summary
position_summary = self.build_position_summary(all_messages, model, topology)
role = model_roles[model]
role_context = self.roles[role]
# PROTOCOL-ADAPTED: Discussion intensity based on protocol
if decision_protocol in ['majority_voting', 'ranked_choice']:
discussion_style = "DEFEND your position and CHALLENGE weak arguments"
discussion_goal = "Prove why your approach is superior"
elif decision_protocol == 'consensus':
discussion_style = "BUILD on other experts' insights and ADDRESS concerns"
discussion_goal = "Work toward a solution everyone can support"
else:
discussion_style = "REFINE your analysis and RESPOND to other experts"
discussion_goal = "Demonstrate the strength of your reasoning"
discussion_prompt = f"""π Expert Round {round_num + 1}: {question}
Your Role: {role_context}
{position_summary}
DISCUSSION FOCUS:
- {discussion_style}
- {discussion_goal}
- Address specific points raised by other experts
- Use current data and research if needed
- Maximum 180 words of focused response
- End with "Position: [UNCHANGED/EVOLVED]" and "Confidence: X/10"
Your expert response:"""
# Log speaking with preserved bubbles
log_event('speaking', speaker=self.models[model]['name'])
existing_bubbles = list(current_state.get("showBubbles", []))
self.update_visual_state({
"participants": visual_participant_names,
"messages": all_messages,
"currentSpeaker": self.models[model]['name'],
"thinking": [],
"showBubbles": existing_bubbles,
"avatarImages": avatar_images
})
time.sleep(2)
response = self.call_model(model, discussion_prompt)
if response:
confidence = self._extract_confidence(response)
message = {
"speaker": self.models[model]['name'],
"text": f"Round {round_num + 1}: {response}",
"confidence": confidence,
"role": model_roles[model]
}
all_messages.append(message)
log_event('message',
speaker=self.models[model]['name'],
content=f"Round {round_num + 1}: {response}",
role=model_roles[model],
confidence=confidence)
else:
# Handle failed API call gracefully
log_event('message',
speaker=self.models[model]['name'],
content=f"Round {round_num + 1}: Analysis temporarily unavailable - API connection failed",
role=model_roles[model],
confidence=0)
message = {
"speaker": self.models[model]['name'],
"text": f"Round {round_num + 1}: β οΈ Analysis temporarily unavailable - API connection failed.",
"confidence": 0,
"role": model_roles[model]
}
all_messages.append(message)
# Update visual state
responded_speakers = list(set(msg["speaker"] for msg in all_messages if msg.get("speaker") and not msg["speaker"].endswith("Research Agent")))
self.update_visual_state({
"participants": visual_participant_names,
"messages": all_messages,
"currentSpeaker": None,
"thinking": [],
"showBubbles": responded_speakers,
"avatarImages": avatar_images
})
time.sleep(1)
# Phase 3: PROTOCOL-SPECIFIC final decision
if decision_protocol == 'consensus':
phase_name = "π€ Phase 3: Building Consensus"
moderator_title = "Senior Advisor"
elif decision_protocol in ['majority_voting', 'ranked_choice']:
phase_name = "βοΈ Phase 3: Final Decision"
moderator_title = "Lead Analyst"
else:
phase_name = "π Phase 3: Expert Synthesis"
moderator_title = "Lead Researcher"
log_event('phase', content=f"{phase_name} - {decision_protocol}")
log_event('thinking', speaker="All experts", content="Synthesizing final recommendation...")
expert_names = [self.models[model]['name'] for model in available_models]
# Preserve existing bubbles during final thinking
existing_bubbles = list(current_state.get("showBubbles", []))
self.update_visual_state({
"participants": visual_participant_names,
"messages": all_messages,
"currentSpeaker": None,
"thinking": expert_names,
"showBubbles": existing_bubbles,
"avatarImages": avatar_images
})
time.sleep(2)
# Generate PROTOCOL-APPROPRIATE final analysis
moderator = self.moderator_model if self.models[self.moderator_model]['available'] else available_models[0]
# Build expert summary
final_positions = {}
confidence_scores = []
# Get list of all research agent names
research_agent_names = [agent.manifest.identification.conversationalName for agent in self.research_agents.values()]
for msg in all_messages:
speaker = msg["speaker"]
if (speaker not in [moderator_title, 'Consilium'] and
speaker not in research_agent_names):
if speaker not in final_positions:
final_positions[speaker] = []
final_positions[speaker].append(msg)
if 'confidence' in msg:
confidence_scores.append(msg['confidence'])
# Create PROFESSIONAL expert summary
expert_summary = f"π― EXPERT ANALYSIS: {question}\n\nFINAL EXPERT POSITIONS:\n"
for speaker, messages in final_positions.items():
latest_msg = messages[-1]
role = latest_msg.get('role', 'standard')
# Extract the core argument
core_argument = latest_msg['text'][:200] + "..." if len(latest_msg['text']) > 200 else latest_msg['text']
confidence = latest_msg.get('confidence', 5)
expert_summary += f"\nπ **{speaker}** ({role}):\n{core_argument}\nFinal Confidence: {confidence}/10\n"
avg_confidence = sum(confidence_scores) / len(confidence_scores) if confidence_scores else 5.0
# PROTOCOL-SPECIFIC synthesis prompt
if decision_protocol == 'consensus':
synthesis_goal = "Build a CONSENSUS recommendation that all experts can support"
synthesis_format = "**CONSENSUS REACHED:** [Yes/Partial/No]\n**RECOMMENDED APPROACH:** [Synthesis]\n**AREAS OF AGREEMENT:** [Common ground]\n**REMAINING CONCERNS:** [Issues to address]"
elif decision_protocol in ['majority_voting', 'ranked_choice']:
synthesis_goal = "Determine the STRONGEST position and declare a clear winner"
synthesis_format = "**DECISION:** [Clear recommendation]\n**WINNING ARGUMENT:** [Most compelling case]\n**KEY EVIDENCE:** [Supporting data]\n**IMPLEMENTATION:** [Next steps]"
else:
synthesis_goal = "Synthesize expert insights into actionable recommendations"
synthesis_format = "**ANALYSIS CONCLUSION:** [Summary]\n**RECOMMENDED APPROACH:** [Best path forward]\n**RISK ASSESSMENT:** [Key considerations]\n**CONFIDENCE LEVEL:** [Overall certainty]"
consensus_prompt = f"""{expert_summary}
π SENIOR ANALYSIS REQUIRED:
{synthesis_goal}
SYNTHESIS REQUIREMENTS:
- Analyze the quality and strength of each expert position
- Identify areas where experts align vs disagree
- Provide a clear, actionable recommendation
- Use additional research if needed to resolve disagreements
- Maximum 300 words of decisive analysis
Average Expert Confidence: {avg_confidence:.1f}/10
Protocol: {decision_protocol}
Format:
{synthesis_format}
Provide your synthesis:"""
log_event('speaking', speaker=moderator_title, content="Synthesizing expert analysis into final recommendation...")
# Preserve existing bubbles during final speaking
existing_bubbles = list(current_state.get("showBubbles", []))
self.update_visual_state({
"participants": visual_participant_names,
"messages": all_messages,
"currentSpeaker": "Consilium",
"thinking": [],
"showBubbles": existing_bubbles,
"avatarImages": avatar_images
})
# Call moderator model - may also trigger function calls
consensus_result = self.call_model(moderator, consensus_prompt)
if not consensus_result:
consensus_result = f"""**ANALYSIS INCOMPLETE:** Technical difficulties prevented full synthesis.
**RECOMMENDED APPROACH:** Manual review of expert positions required.
**KEY CONSIDERATIONS:** All expert inputs should be carefully evaluated.
**NEXT STEPS:** Retry analysis or conduct additional expert consultation."""
# Determine result quality based on protocol
if decision_protocol == 'consensus':
if "CONSENSUS REACHED: Yes" in consensus_result or avg_confidence >= 7.5:
visual_summary = "β
Expert Consensus Achieved"
elif "Partial" in consensus_result:
visual_summary = "β οΈ Partial Consensus - Some Expert Disagreement"
else:
visual_summary = "π€ No Consensus - Significant Expert Disagreement"
elif decision_protocol in ['majority_voting', 'ranked_choice']:
if any(word in consensus_result.upper() for word in ["DECISION:", "WINNING", "RECOMMEND"]):
visual_summary = "βοΈ Clear Expert Recommendation"
else:
visual_summary = "π€ Expert Analysis Complete"
else:
visual_summary = "π Expert Analysis Complete"
final_message = {
"speaker": moderator_title,
"text": f"{visual_summary}\n\n{consensus_result}",
"confidence": avg_confidence,
"role": "moderator"
}
all_messages.append(final_message)
log_event('message',
speaker=moderator_title,
content=consensus_result,
confidence=avg_confidence)
responded_speakers = list(set(msg["speaker"] for msg in all_messages if msg.get("speaker") and not msg["speaker"].endswith("Research Agent")))
self.update_visual_state({
"participants": visual_participant_names,
"messages": all_messages,
"currentSpeaker": None,
"thinking": [],
"showBubbles": responded_speakers,
"avatarImages": avatar_images
})
log_event('phase', content="β
Expert Analysis Complete")
return consensus_result
def update_session_roundtable_state(session_id: str, new_state: Dict):
"""Update roundtable state for specific session"""
session = get_or_create_session_state(session_id)
session["roundtable_state"].update(new_state)
return json.dumps(session["roundtable_state"])
def run_consensus_discussion_session(question: str, discussion_rounds: int = 3,
decision_protocol: str = "consensus", role_assignment: str = "balanced",
topology: str = "full_mesh", moderator_model: str = "mistral",
session_id_state: str = None,
request: gr.Request = None):
"""Session-isolated expert consensus discussion"""
# Get unique session
session_id = get_session_id(request) if not session_id_state else session_id_state
session = get_or_create_session_state(session_id)
# Reset session state for new discussion
session["discussion_log"] = []
session["final_answer"] = ""
def session_visual_update_callback(state_update):
"""Session-specific visual update callback"""
update_session_roundtable_state(session_id, state_update)
def session_log_event(event_type: str, speaker: str = "", content: str = "", **kwargs):
"""Add event to THIS session's log only"""
session["discussion_log"].append({
'type': event_type,
'speaker': speaker,
'content': content,
'timestamp': datetime.now().strftime('%H:%M:%S'),
**kwargs
})
# Create engine with session-specific callback
engine = VisualConsensusEngine(moderator_model, session_visual_update_callback, session_id)
# Run consensus with session-specific logging
result = engine.run_visual_consensus_session(
question, discussion_rounds, decision_protocol,
role_assignment, topology, moderator_model,
session_log_event
)
# Generate session-specific final answer
available_models = [model for model, info in engine.models.items() if info['available']]
session["final_answer"] = f"""## π― Expert Analysis Results
{result}
---
### π Analysis Summary
- **Question:** {question}
- **Protocol:** {decision_protocol.replace('_', ' ').title()}
- **Topology:** {topology.replace('_', ' ').title()}
- **Experts:** {len(available_models)} AI specialists
- **Roles:** {role_assignment.title()}
- **Research Integration:** Native function calling with live data
- **Session ID:** {session_id[:3]}...
*Generated by Consilium: Multi-AI Expert Consensus Platform*"""
# Format session-specific discussion log
formatted_log = format_session_discussion_log(session["discussion_log"])
return ("β
Expert Analysis Complete - See results below",
json.dumps(session["roundtable_state"]),
session["final_answer"],
formatted_log,
session_id)
def format_session_discussion_log(discussion_log: list) -> str:
"""Format discussion log for specific session"""
if not discussion_log:
return "No discussion log available yet."
formatted_log = "# π Complete Expert Discussion Log\n\n"
for entry in discussion_log:
timestamp = entry.get('timestamp', datetime.now().strftime('%H:%M:%S'))
if entry['type'] == 'thinking':
formatted_log += f"**{timestamp}** π€ **{entry['speaker']}** is analyzing...\n\n"
elif entry['type'] == 'speaking':
formatted_log += f"**{timestamp}** π¬ **{entry['speaker']}** is presenting...\n\n"
elif entry['type'] == 'message':
formatted_log += f"**{timestamp}** π **{entry['speaker']}** ({entry.get('role', 'standard')}):\n"
formatted_log += f"> {entry['content']}\n"
if 'confidence' in entry:
formatted_log += f"*Confidence: {entry['confidence']}/10*\n\n"
else:
formatted_log += "\n"
elif entry['type'] == 'research_request':
function_name = entry.get('function', 'Unknown')
query = entry.get('query', 'Unknown query')
requesting_expert = entry.get('requesting_expert', 'Unknown expert')
formatted_log += f"**{timestamp}** π **Research Agent** - Research Request:\n"
formatted_log += f"> **Function:** {function_name.replace('_', ' ').title()}\n"
formatted_log += f"> **Query:** \"{query}\"\n"
formatted_log += f"> **Requested by:** {requesting_expert}\n\n"
elif entry['type'] == 'research_result':
function_name = entry.get('function', 'Unknown')
query = entry.get('query', 'Unknown query')
requesting_expert = entry.get('requesting_expert', 'Unknown expert')
full_result = entry.get('full_result', entry.get('content', 'No result'))
formatted_log += f"**{timestamp}** π **Research Agent** - Research Results:\n"
formatted_log += f"> **Function:** {function_name.replace('_', ' ').title()}\n"
formatted_log += f"> **Query:** \"{query}\"\n"
formatted_log += f"> **For Expert:** {requesting_expert}\n\n"
formatted_log += f"**Research Results:**\n"
formatted_log += f"```\n{full_result}\n```\n\n"
elif entry['type'] == 'phase':
formatted_log += f"\n---\n## {entry['content']}\n---\n\n"
return formatted_log
def check_model_status_session(session_id_state: str = None, request: gr.Request = None):
"""Check and display current model availability for specific session"""
session_id = get_session_id(request) if not session_id_state else session_id_state
session = get_or_create_session_state(session_id)
session_keys = session.get("api_keys", {})
# Get session-specific keys or fall back to env vars
mistral_key = session_keys.get("mistral") or MISTRAL_API_KEY
sambanova_key = session_keys.get("sambanova") or SAMBANOVA_API_KEY
status_info = "## π Expert Model Availability\n\n"
models = {
'Mistral Large': mistral_key,
'DeepSeek-R1': sambanova_key,
'Meta-Llama-3.3-70B-Instruct': sambanova_key,
'Qwen3-32B': sambanova_key
}
for model_name, available in models.items():
if available:
status = f"β
Available (Key: {available[:3]}...)"
else:
status = "β Not configured"
status_info += f"**{model_name}:** {status}\n\n"
return status_info
# Create the professional interface
with gr.Blocks(title="π Consilium: Multi-AI Expert Consensus Platform - OFP (Open Floor Protocol) Version", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π Consilium: Multi-AI Expert Consensus Platform - OFP (Open Floor Protocol) Version
**Watch expert AI models collaborate with live research to solve your most complex decisions**
### π Features:
* Visual roundtable of the AI models, including speech bubbles to see the discussion in real time.
* Includes Mistral (**mistral-large-latest**) via their API and the Models **DeepSeek-R1**, **Meta-Llama-3.3-70B-Instruct** and **Qwen3-32B** via the SambaNova API.
* Optional Research Agents (**Web Search**, **Wikipedia**, **arXiv**, **GitHub**, **SEC EDGAR**) added via the [Open Floor Protocol](https://github.com/open-voice-interoperability/openfloor-docs).
* Assign different roles to the models, the protocol they should follow, and decide the communication strategy.
* Pick one model as the lead analyst (had the best results when picking Mistral).
* Configure the amount of discussion rounds.
* After the discussion, the whole conversation and a final answer will be presented.
""")
# Hidden session state component
session_state = gr.State()
with gr.Tab("π Expert Consensus Analysis"):
with gr.Row():
with gr.Column(scale=1):
question_input = gr.Textbox(
label="π― Strategic Decision Question",
placeholder="What complex decision would you like expert AI analysis on?",
lines=3,
value="Should our startup pivot to AI-first product development?"
)
# Professional question suggestion buttons
with gr.Accordion("βοΈ Example Questions", open=True):
suggestion_btn1 = gr.Button("π’ Business Strategy", size="sm")
suggestion_btn2 = gr.Button("βοΈ Technology Choice", size="sm")
suggestion_btn3 = gr.Button("π Policy Analysis", size="sm")
with gr.Row():
decision_protocol = gr.Dropdown(
choices=["consensus", "majority_voting", "weighted_voting", "ranked_choice", "unanimity"],
value="consensus",
label="βοΈ Decision Protocol",
info="How should experts reach a conclusion?"
)
role_assignment = gr.Dropdown(
choices=["balanced", "specialized", "adversarial", "none"],
value="balanced",
label="π Expert Roles",
info="How should expertise be distributed?"
)
with gr.Row():
topology = gr.Dropdown(
choices=["full_mesh", "star", "ring"],
value="full_mesh",
label="π Communication Structure",
info="Full mesh: all collaborate, Star: through moderator, Ring: sequential"
)
moderator_model = gr.Dropdown(
choices=["mistral", "sambanova_deepseek", "sambanova_llama", "sambanova_qwen"],
value="mistral",
label="π¨ββοΈ Lead Analyst",
info="Mistral works best as Lead"
)
rounds_input = gr.Slider(
minimum=1, maximum=5, value=2, step=1,
label="π Discussion Rounds",
info="More rounds = deeper analysis"
)
start_btn = gr.Button("π Start Expert Analysis", variant="primary", size="lg")
status_output = gr.Textbox(label="π Analysis Status", interactive=False)
with gr.Column(scale=2):
# The visual roundtable component
roundtable = consilium_roundtable(
label="AI Expert Roundtable",
label_icon="https://avatars.githubusercontent.com/u/46052400?s=48&v=4",
value=json.dumps({
"participants": [],
"messages": [],
"currentSpeaker": None,
"thinking": [],
"showBubbles": [],
"avatarImages": avatar_images
})
)
# Final answer section
with gr.Row():
final_answer_output = gr.Markdown(
label="π― Expert Analysis Results",
value="*Expert analysis results will appear here...*"
)
# Collapsible discussion log
with gr.Accordion("π Complete Expert Discussion Log", open=False):
discussion_log_output = gr.Markdown(
value="*Complete expert discussion transcript will appear here...*"
)
# Professional question handlers
def set_business_question():
return "Should our startup pivot to AI-first product development?"
def set_tech_question():
return "Microservices vs monolith architecture for our scaling platform?"
def set_policy_question():
return "Should we prioritize geoengineering research over emissions reduction?"
suggestion_btn1.click(set_business_question, outputs=[question_input])
suggestion_btn2.click(set_tech_question, outputs=[question_input])
suggestion_btn3.click(set_policy_question, outputs=[question_input])
# Event handlers
def on_start_discussion(question, rounds, protocol, roles, topology, moderator, session_id_state, request: gr.Request = None):
# Start discussion immediately
result = run_consensus_discussion_session(question, rounds, protocol, roles, topology, moderator, session_id_state, request)
return result
start_btn.click(
on_start_discussion,
inputs=[question_input, rounds_input, decision_protocol, role_assignment, topology, moderator_model, session_state],
outputs=[status_output, roundtable, final_answer_output, discussion_log_output, session_state]
)
# Auto-refresh the roundtable state every 1 second during discussion for better visibility
def refresh_roundtable(session_id_state, request: gr.Request = None):
session_id = get_session_id(request) if not session_id_state else session_id_state
if session_id in user_sessions:
return json.dumps(user_sessions[session_id]["roundtable_state"])
return json.dumps({
"participants": [],
"messages": [],
"currentSpeaker": None,
"thinking": [],
"showBubbles": [],
"avatarImages": avatar_images
})
gr.Timer(1.0).tick(refresh_roundtable, inputs=[session_state], outputs=[roundtable])
with gr.Tab("π§ Configuration & Setup"):
gr.Markdown("## π API Keys Configuration")
gr.Markdown("*Enter your API keys below OR set them as environment variables*")
gr.Markdown("**π Privacy:** Your API keys are stored only for your session and are not shared with other users.")
with gr.Row():
with gr.Column():
mistral_key_input = gr.Textbox(
label="Mistral API Key",
placeholder="Enter your Mistral API key...",
type="password",
info="Required for Mistral Large expert model with function calling"
)
sambanova_key_input = gr.Textbox(
label="SambaNova API Key",
placeholder="Enter your SambaNova API key...",
type="password",
info="Required for DeepSeek, Llama, and QwQ expert models with function calling"
)
with gr.Column():
# Add a button to save/update keys
save_keys_btn = gr.Button("πΎ Save API Keys", variant="secondary")
keys_status = gr.Textbox(
label="Keys Status",
value="No API keys configured - using environment variables if available",
interactive=False
)
# Connect the save button
save_keys_btn.click(
update_session_api_keys,
inputs=[mistral_key_input, sambanova_key_input, session_state],
outputs=[keys_status, session_state]
)
model_status_display = gr.Markdown(check_model_status_session())
# Add refresh button for model status
refresh_status_btn = gr.Button("π Refresh Expert Status")
refresh_status_btn.click(
check_model_status_session,
inputs=[session_state],
outputs=[model_status_display]
)
gr.Markdown("""
## π οΈ Setup Instructions
### π Quick Start (Recommended)
1. **Enter API keys above** (they'll be used only for your session)
2. **Click "Save API Keys"**
3. **Start an expert analysis with live research!**
### π Get API Keys:
- **Mistral:** [console.mistral.ai](https://console.mistral.ai)
- **SambaNova:** [cloud.sambanova.ai](https://cloud.sambanova.ai)
## Local Setups
### π Environment Variables
```bash
export MISTRAL_API_KEY=your_key_here
export SAMBANOVA_API_KEY=your_key_here
export MODERATOR_MODEL=mistral
```
### π Dependencies
```bash
pip install -r requirements.txt
```
### Start
```bash
python app.py
```
""")
with gr.Tab("π Documentation"):
gr.Markdown("""
## π **Expert Role Assignments**
#### **βοΈ Balanced (Recommended for Most Decisions)**
- **Expert Advocate**: Passionate defender with compelling evidence
- **Critical Analyst**: Rigorous critic identifying flaws and risks
- **Strategic Advisor**: Practical implementer focused on real-world constraints
- **Research Specialist**: Authoritative knowledge with evidence-based insights
#### **π― Specialized (For Technical Decisions)**
- **Research Specialist**: Deep domain expertise and authoritative analysis
- **Strategic Advisor**: Implementation-focused practical guidance
- **Innovation Catalyst**: Breakthrough approaches and unconventional thinking
- **Expert Advocate**: Passionate championing of specialized viewpoints
#### **βοΈ Adversarial (For Controversial Topics)**
- **Critical Analyst**: Aggressive identification of weaknesses
- **Innovation Catalyst**: Deliberately challenging conventional wisdom
- **Expert Advocate**: Passionate defense of positions
- **Strategic Advisor**: Hard-nosed practical constraints
## βοΈ **Decision Protocols Explained**
### π€ **Consensus** (Collaborative)
- **Goal**: Find solutions everyone can support
- **Style**: Respectful but rigorous dialogue
- **Best for**: Team decisions, long-term strategy
- **Output**: "Expert Consensus Achieved" or areas of disagreement
### π³οΈ **Majority Voting** (Competitive)
- **Goal**: Let the strongest argument win
- **Style**: Passionate advocacy and strong positions
- **Best for**: Clear either/or decisions
- **Output**: "Clear Expert Recommendation" with winning argument
### π **Weighted Voting** (Expertise-Based)
- **Goal**: Let expertise and evidence quality determine influence
- **Style**: Authoritative analysis with detailed reasoning
- **Best for**: Technical decisions requiring deep knowledge
- **Output**: Expert synthesis weighted by confidence levels
### π **Ranked Choice** (Comprehensive)
- **Goal**: Explore all options systematically
- **Style**: Systematic evaluation of alternatives
- **Best for**: Complex decisions with multiple options
- **Output**: Ranked recommendations with detailed analysis
### π **Unanimity** (Diplomatic)
- **Goal**: Achieve complete agreement
- **Style**: Bridge-building and diplomatic dialogue
- **Best for**: High-stakes decisions requiring buy-in
- **Output**: Unanimous agreement or identification of blocking issues
## π **Communication Structures**
### πΈοΈ **Full Mesh** (Complete Collaboration)
- Every expert sees all other expert responses
- Maximum information sharing and cross-pollination
- Best for comprehensive analysis and complex decisions
- **Use when:** You want thorough multi-perspective analysis
### β **Star** (Hierarchical Analysis)
- Experts only see the lead analyst's responses
- Prevents groupthink, maintains independent thinking
- Good for getting diverse, uninfluenced perspectives
- **Use when:** You want fresh, independent expert takes
### π **Ring** (Sequential Analysis)
- Each expert only sees the previous expert's response
- Creates interesting chains of reasoning and idea evolution
- Can lead to surprising consensus emergence
- **Use when:** You want to see how ideas build and evolve
## ποΈ **OpenFloor Protocol Integration**
This implementation uses the [Open Floor Protocol (OFP)](https://github.com/open-voice-interoperability/openfloor-docs) for:
### π **Inter-Agent Communication**
- **Envelope Structure**: Standard JSON format for agent messaging
- **Event Types**: Utterance, Context, Invite, Bye events
- **Conversation Management**: Persistent conversation threads
- **Agent Discovery**: Manifest-based capability matching
### π **Research Agent Architecture**
- **Dedicated Services**: Each research tool runs as an independent OpenFloor agent
- **HTTP Endpoints**: `/openfloor/conversation` and `/openfloor/manifest`
- **Proper Invitation Flow**: Agents are invited to join conversations for specific research tasks
- **Context Events**: Research results are delivered via standardized context events
### ποΈ **Floor Manager**
- **Central Coordination**: Routes messages between all agents
- **Conversation State**: Maintains participant lists and message history
- **Visual Integration**: Updates UI based on OpenFloor conversation events
- **Session Isolation**: Each user session has its own conversation context
### π **Event Flow Example**
1. **AI Expert** needs research β generates function call
2. **Floor Manager** invites **Research Agent** to conversation
3. **Research Agent** joins and receives query via UtteranceEvent
4. **Research Agent** performs search and responds with ContextEvent
5. **Floor Manager** routes result back to requesting expert
6. **Research Agent** sends ByeEvent and leaves conversation
This architecture ensures true OpenFloor compliance while maintaining the visual roundtable experience.
""")
# Launch configuration
if __name__ == "__main__":
demo.queue(default_concurrency_limit=10)
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
debug=False,
mcp_server=False
) |