Spaces:
Running
Running
Update openfloor/OpenFloorResearchAgent.py
Browse files
openfloor/OpenFloorResearchAgent.py
CHANGED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
class OpenFloorResearchAgent:
|
2 |
+
"""Wrap research tools as independent OpenFloor agents"""
|
3 |
+
|
4 |
+
def __init__(self, tool: BaseTool, port: int = None):
|
5 |
+
self.tool = tool
|
6 |
+
self.port = port
|
7 |
+
self.manifest = self._create_manifest()
|
8 |
+
self.active_conversations = {}
|
9 |
+
|
10 |
+
def _create_manifest(self) -> Manifest:
|
11 |
+
"""Create OpenFloor manifest for this research agent"""
|
12 |
+
speaker_uri = f"tag:research.consilium,2025:{self.tool.name.lower().replace(' ', '-')}-agent"
|
13 |
+
|
14 |
+
# Tool-specific keyphrases and capabilities
|
15 |
+
tool_configs = {
|
16 |
+
'Web Search': {
|
17 |
+
'keyphrases': ['web', 'search', 'current', 'news', 'latest', 'recent'],
|
18 |
+
'synopsis': 'Real-time web search for current information and trends'
|
19 |
+
},
|
20 |
+
'Wikipedia': {
|
21 |
+
'keyphrases': ['facts', 'encyclopedia', 'history', 'knowledge', 'definition'],
|
22 |
+
'synopsis': 'Authoritative encyclopedia research and factual verification'
|
23 |
+
},
|
24 |
+
'arXiv': {
|
25 |
+
'keyphrases': ['academic', 'research', 'papers', 'science', 'study'],
|
26 |
+
'synopsis': 'Academic research papers and scientific literature analysis'
|
27 |
+
},
|
28 |
+
'GitHub': {
|
29 |
+
'keyphrases': ['technology', 'code', 'development', 'programming', 'trends'],
|
30 |
+
'synopsis': 'Technology adoption trends and software development analysis'
|
31 |
+
},
|
32 |
+
'SEC EDGAR': {
|
33 |
+
'keyphrases': ['financial', 'company', 'earnings', 'sec', 'filings'],
|
34 |
+
'synopsis': 'Corporate financial data and SEC regulatory filings research'
|
35 |
+
}
|
36 |
+
}
|
37 |
+
|
38 |
+
config = tool_configs.get(self.tool.name, {
|
39 |
+
'keyphrases': ['research', 'data'],
|
40 |
+
'synopsis': self.tool.description
|
41 |
+
})
|
42 |
+
|
43 |
+
return Manifest(
|
44 |
+
identification=Identification(
|
45 |
+
speakerUri=speaker_uri,
|
46 |
+
serviceUrl=f"http://localhost:{self.port}/openfloor" if self.port else None,
|
47 |
+
conversationalName=f"{self.tool.name} Research Agent",
|
48 |
+
organization="Consilium Research Division",
|
49 |
+
role="Research Specialist",
|
50 |
+
synopsis=config['synopsis']
|
51 |
+
),
|
52 |
+
capabilities=[
|
53 |
+
Capability(
|
54 |
+
keyphrases=config['keyphrases'],
|
55 |
+
descriptions=[self.tool.description],
|
56 |
+
languages=["en-us"]
|
57 |
+
)
|
58 |
+
]
|
59 |
+
)
|
60 |
+
|
61 |
+
def handle_utterance_event(self, envelope: Envelope) -> Envelope:
|
62 |
+
"""Handle research requests from AI experts"""
|
63 |
+
print(f"π DEBUG: {self.tool.name} - Starting handle_utterance_event")
|
64 |
+
|
65 |
+
# Extract the query from the utterance
|
66 |
+
for event in envelope.events:
|
67 |
+
if hasattr(event, 'eventType') and event.eventType == 'utterance':
|
68 |
+
dialog_event = event.parameters.get('dialogEvent')
|
69 |
+
|
70 |
+
if dialog_event and isinstance(dialog_event, dict):
|
71 |
+
# dialog_event is a dict, not an object - use dict access
|
72 |
+
features = dialog_event.get('features')
|
73 |
+
print(f"π DEBUG: features: {features}")
|
74 |
+
|
75 |
+
if features and 'text' in features:
|
76 |
+
text_feature = features['text']
|
77 |
+
print(f"π DEBUG: text_feature: {text_feature}")
|
78 |
+
|
79 |
+
if 'tokens' in text_feature:
|
80 |
+
tokens = text_feature['tokens']
|
81 |
+
query_text = ' '.join([token.get('value', '') for token in tokens])
|
82 |
+
|
83 |
+
print(f"π DEBUG: {self.tool.name} received query: '{query_text}'")
|
84 |
+
|
85 |
+
# Perform the research
|
86 |
+
import time
|
87 |
+
start_time = time.time()
|
88 |
+
research_result = self.tool.search(query_text)
|
89 |
+
end_time = time.time()
|
90 |
+
|
91 |
+
print(f"π DEBUG: {self.tool.name} completed in {end_time - start_time:.2f}s")
|
92 |
+
print(f"π DEBUG: Result length: {len(research_result)} chars")
|
93 |
+
print(f"π DEBUG: Result preview: {research_result[:200]}...")
|
94 |
+
|
95 |
+
# Create response envelope
|
96 |
+
return self._create_response_envelope(envelope, research_result, query_text)
|
97 |
+
|
98 |
+
return self._create_error_response(envelope, "Could not extract query from request")
|
99 |
+
|
100 |
+
def _create_response_envelope(self, original_envelope: Envelope, research_result: str, query: str) -> Envelope:
|
101 |
+
"""Create OpenFloor response envelope with research results"""
|
102 |
+
|
103 |
+
# Create response dialog event
|
104 |
+
response_dialog = DialogEvent(
|
105 |
+
speakerUri=self.manifest.identification.speakerUri,
|
106 |
+
features={
|
107 |
+
"text": TextFeature(values=[research_result])
|
108 |
+
}
|
109 |
+
)
|
110 |
+
|
111 |
+
# Create context with research metadata
|
112 |
+
research_context = ContextEvent(
|
113 |
+
parameters={
|
114 |
+
"research_tool": self.tool.name,
|
115 |
+
"query": query,
|
116 |
+
"source": self.tool.name.lower().replace(' ', '_'),
|
117 |
+
"confidence": self._assess_result_confidence(research_result),
|
118 |
+
"timestamp": datetime.now().isoformat()
|
119 |
+
}
|
120 |
+
)
|
121 |
+
|
122 |
+
# Create response envelope
|
123 |
+
response_envelope = Envelope(
|
124 |
+
conversation=original_envelope.conversation,
|
125 |
+
sender=Sender(speakerUri=self.manifest.identification.speakerUri),
|
126 |
+
events=[
|
127 |
+
UtteranceEvent(dialogEvent=response_dialog),
|
128 |
+
research_context
|
129 |
+
]
|
130 |
+
)
|
131 |
+
|
132 |
+
return response_envelope
|
133 |
+
|
134 |
+
def _assess_result_confidence(self, result: str) -> float:
|
135 |
+
"""Assess confidence in research result quality"""
|
136 |
+
if not result or len(result) < 50:
|
137 |
+
return 0.3
|
138 |
+
|
139 |
+
quality_indicators = [
|
140 |
+
(len(result) > 500, 0.2), # Substantial content
|
141 |
+
(any(year in result for year in ['2024', '2025']), 0.2), # Recent data
|
142 |
+
(result.count('\n') > 5, 0.1), # Well-structured
|
143 |
+
('error' not in result.lower(), 0.3), # No errors
|
144 |
+
(any(indicator in result.lower() for indicator in ['data', 'study', 'research']), 0.2) # Authoritative
|
145 |
+
]
|
146 |
+
|
147 |
+
confidence = 0.5 # Base confidence
|
148 |
+
for condition, boost in quality_indicators:
|
149 |
+
if condition:
|
150 |
+
confidence += boost
|
151 |
+
|
152 |
+
return min(1.0, confidence)
|
153 |
+
|
154 |
+
def _create_error_response(self, original_envelope: Envelope, error_msg: str) -> Envelope:
|
155 |
+
"""Create error response envelope"""
|
156 |
+
error_dialog = DialogEvent(
|
157 |
+
speakerUri=self.manifest.identification.speakerUri,
|
158 |
+
features={
|
159 |
+
"text": TextFeature(values=[f"Research error: {error_msg}"])
|
160 |
+
}
|
161 |
+
)
|
162 |
+
|
163 |
+
return Envelope(
|
164 |
+
conversation=original_envelope.conversation,
|
165 |
+
sender=Sender(speakerUri=self.manifest.identification.speakerUri),
|
166 |
+
events=[UtteranceEvent(dialogEvent=error_dialog)]
|
167 |
+
)
|
168 |
+
|
169 |
+
def join_conversation(self, conversation_id: str) -> bool:
|
170 |
+
"""Join a conversation as an active research agent"""
|
171 |
+
self.active_conversations[conversation_id] = {
|
172 |
+
'joined_at': datetime.now(),
|
173 |
+
'status': 'active'
|
174 |
+
}
|
175 |
+
return True
|
176 |
+
|
177 |
+
def leave_conversation(self, conversation_id: str) -> bool:
|
178 |
+
"""Leave a conversation"""
|
179 |
+
if conversation_id in self.active_conversations:
|
180 |
+
del self.active_conversations[conversation_id]
|
181 |
+
return True
|
182 |
+
|
183 |
+
def get_manifest(self) -> Manifest:
|
184 |
+
"""Return the OpenFloor manifest for this research agent"""
|
185 |
+
return self.manifest
|