Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import os
|
3 |
+
from peft import PeftModel
|
4 |
+
import gradio as gr
|
5 |
+
from diffusers import StableDiffusionImg2ImgPipeline
|
6 |
+
from diffusers import AutoPipelineForImage2Image
|
7 |
+
from diffusers import DiffusionPipeline
|
8 |
+
import torch
|
9 |
+
from PIL import Image
|
10 |
+
from diffusers import StableDiffusionPipeline
|
11 |
+
# Load the model
|
12 |
+
# model_id = "nitrosocke/Ghibli-Diffusion"
|
13 |
+
# pipe = StableDiffusionImg2ImgPipeline.from_pretrained(model_id, torch_dtype=torch.float32)
|
14 |
+
tk=os.getenv('ghtoken')
|
15 |
+
print("ttttt",tk)
|
16 |
+
model_id = "black-forest-labs/FLUX.1-dev"
|
17 |
+
# pipe =DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16,token=tk)
|
18 |
+
pipe =AutoPipelineForImage2Image.from_pretrained(model_id, torch_dtype=torch.bfloat16,token=tk)
|
19 |
+
|
20 |
+
|
21 |
+
# # 1. 选择一个基础模型,例如 SD 1.5
|
22 |
+
# base_model_id = "runwayml/stable-diffusion-v1-5"
|
23 |
+
|
24 |
+
# # 2. 加载基础模型
|
25 |
+
# pipe = StableDiffusionPipeline.from_pretrained(
|
26 |
+
# base_model_id,
|
27 |
+
# torch_dtype=torch.float32
|
28 |
+
# )
|
29 |
+
|
30 |
+
# # 3. 加载 LoRA 权重
|
31 |
+
# lora_model_id = "openfree/flux-chatgpt-ghibli-lora"
|
32 |
+
# pipe.load_lora_weights(lora_model_id)
|
33 |
+
|
34 |
+
# pipe = AutoPipelineForImage2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.bfloat16,token=True)
|
35 |
+
# pipe.load_lora_weights('openfree/flux-chatgpt-ghibli-lora', weight_name='flux-chatgpt-ghibli-lora.safetensors')
|
36 |
+
pipe.load_lora_weights("alvarobartt/ghibli-characters-flux-lora")
|
37 |
+
|
38 |
+
|
39 |
+
# Move pipeline to GPU if available
|
40 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
41 |
+
pipe = pipe.to(device)
|
42 |
+
|
43 |
+
# Define the inference function
|
44 |
+
@spaces.GPU
|
45 |
+
def ghibli_transform(input_image, prompt="GHBLI anime style photo", guidance_scale=3.5, num_steps=30):
|
46 |
+
print('canshu_guidance_scale',guidance_scale)
|
47 |
+
print('canshu_num_steps',num_steps)
|
48 |
+
if input_image is None:
|
49 |
+
raise gr.Error("No image uploaded! Please upload an image before clicking Transform.")
|
50 |
+
|
51 |
+
# Process the input image (keep it as PIL Image)
|
52 |
+
try:
|
53 |
+
init_image = input_image.convert("RGB").resize((1024, 768))
|
54 |
+
except Exception as e:
|
55 |
+
raise gr.Error(f"Failed to process image: {str(e)}")
|
56 |
+
|
57 |
+
# Generate the Ghibli-style image
|
58 |
+
try:
|
59 |
+
output = pipe(
|
60 |
+
prompt=prompt,
|
61 |
+
image=init_image,
|
62 |
+
# strength=strength,
|
63 |
+
# guidance_scale=guidance_scale,
|
64 |
+
# num_inference_steps=num_steps # Use the UI-provided value
|
65 |
+
######
|
66 |
+
guidance_scale=guidance_scale,
|
67 |
+
num_inference_steps=num_steps
|
68 |
+
|
69 |
+
######
|
70 |
+
).images[0]
|
71 |
+
except Exception as e:
|
72 |
+
raise gr.Error(f"Pipeline error: {str(e)}")
|
73 |
+
|
74 |
+
return output
|
75 |
+
|
76 |
+
# Create the Gradio interface
|
77 |
+
with gr.Blocks(title="Transformer") as demo:
|
78 |
+
gr.Markdown("# Transformer")
|
79 |
+
gr.Markdown("Upload an image and transform it! [Website:](http://imagetoghibli.online/)")
|
80 |
+
|
81 |
+
with gr.Row():
|
82 |
+
with gr.Column():
|
83 |
+
input_img = gr.Image(label="Upload Image", type="pil")
|
84 |
+
prompt = gr.Textbox(label="Prompt", value="GHBLI anime style photo")
|
85 |
+
|
86 |
+
guidance = gr.Slider(1, 20, value=3.5, step=0.5, label="Guidance Scale")
|
87 |
+
num_steps = gr.Slider(10, 100, value=30, step=5, label="Inference Steps (Higher = Better Quality, Slower)")
|
88 |
+
submit_btn = gr.Button("Transform")
|
89 |
+
with gr.Column():
|
90 |
+
output_img = gr.Image(label="Ghibli-Style Output")
|
91 |
+
|
92 |
+
# Connect the button to the function
|
93 |
+
submit_btn.click(
|
94 |
+
fn=ghibli_transform,
|
95 |
+
inputs=[input_img, prompt, guidance, num_steps],
|
96 |
+
outputs=output_img
|
97 |
+
)
|
98 |
+
|
99 |
+
# Launch the Space with share=True for public link
|
100 |
+
demo.launch(share=True)
|