Spaces:
Runtime error
Runtime error
LIU, Zichen
commited on
Commit
·
1a1aace
1
Parent(s):
78fe60c
update missing files
Browse files
MagicQuill/comfy/ldm/models/__pycache__/autoencoder.cpython-310.pyc
ADDED
|
Binary file (8.43 kB). View file
|
|
|
MagicQuill/comfy/ldm/models/autoencoder.py
ADDED
|
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from contextlib import contextmanager
|
| 3 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 4 |
+
|
| 5 |
+
from comfy.ldm.modules.distributions.distributions import DiagonalGaussianDistribution
|
| 6 |
+
|
| 7 |
+
from comfy.ldm.util import instantiate_from_config
|
| 8 |
+
from comfy.ldm.modules.ema import LitEma
|
| 9 |
+
import comfy.ops
|
| 10 |
+
|
| 11 |
+
class DiagonalGaussianRegularizer(torch.nn.Module):
|
| 12 |
+
def __init__(self, sample: bool = True):
|
| 13 |
+
super().__init__()
|
| 14 |
+
self.sample = sample
|
| 15 |
+
|
| 16 |
+
def get_trainable_parameters(self) -> Any:
|
| 17 |
+
yield from ()
|
| 18 |
+
|
| 19 |
+
def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]:
|
| 20 |
+
log = dict()
|
| 21 |
+
posterior = DiagonalGaussianDistribution(z)
|
| 22 |
+
if self.sample:
|
| 23 |
+
z = posterior.sample()
|
| 24 |
+
else:
|
| 25 |
+
z = posterior.mode()
|
| 26 |
+
kl_loss = posterior.kl()
|
| 27 |
+
kl_loss = torch.sum(kl_loss) / kl_loss.shape[0]
|
| 28 |
+
log["kl_loss"] = kl_loss
|
| 29 |
+
return z, log
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class AbstractAutoencoder(torch.nn.Module):
|
| 33 |
+
"""
|
| 34 |
+
This is the base class for all autoencoders, including image autoencoders, image autoencoders with discriminators,
|
| 35 |
+
unCLIP models, etc. Hence, it is fairly general, and specific features
|
| 36 |
+
(e.g. discriminator training, encoding, decoding) must be implemented in subclasses.
|
| 37 |
+
"""
|
| 38 |
+
|
| 39 |
+
def __init__(
|
| 40 |
+
self,
|
| 41 |
+
ema_decay: Union[None, float] = None,
|
| 42 |
+
monitor: Union[None, str] = None,
|
| 43 |
+
input_key: str = "jpg",
|
| 44 |
+
**kwargs,
|
| 45 |
+
):
|
| 46 |
+
super().__init__()
|
| 47 |
+
|
| 48 |
+
self.input_key = input_key
|
| 49 |
+
self.use_ema = ema_decay is not None
|
| 50 |
+
if monitor is not None:
|
| 51 |
+
self.monitor = monitor
|
| 52 |
+
|
| 53 |
+
if self.use_ema:
|
| 54 |
+
self.model_ema = LitEma(self, decay=ema_decay)
|
| 55 |
+
logpy.info(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
| 56 |
+
|
| 57 |
+
def get_input(self, batch) -> Any:
|
| 58 |
+
raise NotImplementedError()
|
| 59 |
+
|
| 60 |
+
def on_train_batch_end(self, *args, **kwargs):
|
| 61 |
+
# for EMA computation
|
| 62 |
+
if self.use_ema:
|
| 63 |
+
self.model_ema(self)
|
| 64 |
+
|
| 65 |
+
@contextmanager
|
| 66 |
+
def ema_scope(self, context=None):
|
| 67 |
+
if self.use_ema:
|
| 68 |
+
self.model_ema.store(self.parameters())
|
| 69 |
+
self.model_ema.copy_to(self)
|
| 70 |
+
if context is not None:
|
| 71 |
+
logpy.info(f"{context}: Switched to EMA weights")
|
| 72 |
+
try:
|
| 73 |
+
yield None
|
| 74 |
+
finally:
|
| 75 |
+
if self.use_ema:
|
| 76 |
+
self.model_ema.restore(self.parameters())
|
| 77 |
+
if context is not None:
|
| 78 |
+
logpy.info(f"{context}: Restored training weights")
|
| 79 |
+
|
| 80 |
+
def encode(self, *args, **kwargs) -> torch.Tensor:
|
| 81 |
+
raise NotImplementedError("encode()-method of abstract base class called")
|
| 82 |
+
|
| 83 |
+
def decode(self, *args, **kwargs) -> torch.Tensor:
|
| 84 |
+
raise NotImplementedError("decode()-method of abstract base class called")
|
| 85 |
+
|
| 86 |
+
def instantiate_optimizer_from_config(self, params, lr, cfg):
|
| 87 |
+
logpy.info(f"loading >>> {cfg['target']} <<< optimizer from config")
|
| 88 |
+
return get_obj_from_str(cfg["target"])(
|
| 89 |
+
params, lr=lr, **cfg.get("params", dict())
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
def configure_optimizers(self) -> Any:
|
| 93 |
+
raise NotImplementedError()
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
class AutoencodingEngine(AbstractAutoencoder):
|
| 97 |
+
"""
|
| 98 |
+
Base class for all image autoencoders that we train, like VQGAN or AutoencoderKL
|
| 99 |
+
(we also restore them explicitly as special cases for legacy reasons).
|
| 100 |
+
Regularizations such as KL or VQ are moved to the regularizer class.
|
| 101 |
+
"""
|
| 102 |
+
|
| 103 |
+
def __init__(
|
| 104 |
+
self,
|
| 105 |
+
*args,
|
| 106 |
+
encoder_config: Dict,
|
| 107 |
+
decoder_config: Dict,
|
| 108 |
+
regularizer_config: Dict,
|
| 109 |
+
**kwargs,
|
| 110 |
+
):
|
| 111 |
+
super().__init__(*args, **kwargs)
|
| 112 |
+
|
| 113 |
+
self.encoder: torch.nn.Module = instantiate_from_config(encoder_config)
|
| 114 |
+
self.decoder: torch.nn.Module = instantiate_from_config(decoder_config)
|
| 115 |
+
self.regularization: AbstractRegularizer = instantiate_from_config(
|
| 116 |
+
regularizer_config
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
def get_last_layer(self):
|
| 120 |
+
return self.decoder.get_last_layer()
|
| 121 |
+
|
| 122 |
+
def encode(
|
| 123 |
+
self,
|
| 124 |
+
x: torch.Tensor,
|
| 125 |
+
return_reg_log: bool = False,
|
| 126 |
+
unregularized: bool = False,
|
| 127 |
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, dict]]:
|
| 128 |
+
z = self.encoder(x)
|
| 129 |
+
if unregularized:
|
| 130 |
+
return z, dict()
|
| 131 |
+
z, reg_log = self.regularization(z)
|
| 132 |
+
if return_reg_log:
|
| 133 |
+
return z, reg_log
|
| 134 |
+
return z
|
| 135 |
+
|
| 136 |
+
def decode(self, z: torch.Tensor, **kwargs) -> torch.Tensor:
|
| 137 |
+
x = self.decoder(z, **kwargs)
|
| 138 |
+
return x
|
| 139 |
+
|
| 140 |
+
def forward(
|
| 141 |
+
self, x: torch.Tensor, **additional_decode_kwargs
|
| 142 |
+
) -> Tuple[torch.Tensor, torch.Tensor, dict]:
|
| 143 |
+
z, reg_log = self.encode(x, return_reg_log=True)
|
| 144 |
+
dec = self.decode(z, **additional_decode_kwargs)
|
| 145 |
+
return z, dec, reg_log
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
class AutoencodingEngineLegacy(AutoencodingEngine):
|
| 149 |
+
def __init__(self, embed_dim: int, **kwargs):
|
| 150 |
+
self.max_batch_size = kwargs.pop("max_batch_size", None)
|
| 151 |
+
ddconfig = kwargs.pop("ddconfig")
|
| 152 |
+
super().__init__(
|
| 153 |
+
encoder_config={
|
| 154 |
+
"target": "comfy.ldm.modules.diffusionmodules.model.Encoder",
|
| 155 |
+
"params": ddconfig,
|
| 156 |
+
},
|
| 157 |
+
decoder_config={
|
| 158 |
+
"target": "comfy.ldm.modules.diffusionmodules.model.Decoder",
|
| 159 |
+
"params": ddconfig,
|
| 160 |
+
},
|
| 161 |
+
**kwargs,
|
| 162 |
+
)
|
| 163 |
+
self.quant_conv = comfy.ops.disable_weight_init.Conv2d(
|
| 164 |
+
(1 + ddconfig["double_z"]) * ddconfig["z_channels"],
|
| 165 |
+
(1 + ddconfig["double_z"]) * embed_dim,
|
| 166 |
+
1,
|
| 167 |
+
)
|
| 168 |
+
self.post_quant_conv = comfy.ops.disable_weight_init.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
| 169 |
+
self.embed_dim = embed_dim
|
| 170 |
+
|
| 171 |
+
def get_autoencoder_params(self) -> list:
|
| 172 |
+
params = super().get_autoencoder_params()
|
| 173 |
+
return params
|
| 174 |
+
|
| 175 |
+
def encode(
|
| 176 |
+
self, x: torch.Tensor, return_reg_log: bool = False
|
| 177 |
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, dict]]:
|
| 178 |
+
if self.max_batch_size is None:
|
| 179 |
+
z = self.encoder(x)
|
| 180 |
+
z = self.quant_conv(z)
|
| 181 |
+
else:
|
| 182 |
+
N = x.shape[0]
|
| 183 |
+
bs = self.max_batch_size
|
| 184 |
+
n_batches = int(math.ceil(N / bs))
|
| 185 |
+
z = list()
|
| 186 |
+
for i_batch in range(n_batches):
|
| 187 |
+
z_batch = self.encoder(x[i_batch * bs : (i_batch + 1) * bs])
|
| 188 |
+
z_batch = self.quant_conv(z_batch)
|
| 189 |
+
z.append(z_batch)
|
| 190 |
+
z = torch.cat(z, 0)
|
| 191 |
+
|
| 192 |
+
z, reg_log = self.regularization(z)
|
| 193 |
+
if return_reg_log:
|
| 194 |
+
return z, reg_log
|
| 195 |
+
return z
|
| 196 |
+
|
| 197 |
+
def decode(self, z: torch.Tensor, **decoder_kwargs) -> torch.Tensor:
|
| 198 |
+
if self.max_batch_size is None:
|
| 199 |
+
dec = self.post_quant_conv(z)
|
| 200 |
+
dec = self.decoder(dec, **decoder_kwargs)
|
| 201 |
+
else:
|
| 202 |
+
N = z.shape[0]
|
| 203 |
+
bs = self.max_batch_size
|
| 204 |
+
n_batches = int(math.ceil(N / bs))
|
| 205 |
+
dec = list()
|
| 206 |
+
for i_batch in range(n_batches):
|
| 207 |
+
dec_batch = self.post_quant_conv(z[i_batch * bs : (i_batch + 1) * bs])
|
| 208 |
+
dec_batch = self.decoder(dec_batch, **decoder_kwargs)
|
| 209 |
+
dec.append(dec_batch)
|
| 210 |
+
dec = torch.cat(dec, 0)
|
| 211 |
+
|
| 212 |
+
return dec
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
class AutoencoderKL(AutoencodingEngineLegacy):
|
| 216 |
+
def __init__(self, **kwargs):
|
| 217 |
+
if "lossconfig" in kwargs:
|
| 218 |
+
kwargs["loss_config"] = kwargs.pop("lossconfig")
|
| 219 |
+
super().__init__(
|
| 220 |
+
regularizer_config={
|
| 221 |
+
"target": (
|
| 222 |
+
"comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer"
|
| 223 |
+
)
|
| 224 |
+
},
|
| 225 |
+
**kwargs,
|
| 226 |
+
)
|