Spaces:
Sleeping
Sleeping
Upload 5 files
Browse files- .gitattributes +34 -35
- .gitignore +131 -0
- README.md +13 -13
- app.py +374 -0
- requirements.txt +12 -0
.gitattributes
CHANGED
|
@@ -1,35 +1,34 @@
|
|
| 1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
-
*.
|
| 29 |
-
*.
|
| 30 |
-
*.
|
| 31 |
-
*.
|
| 32 |
-
*.
|
| 33 |
-
*.
|
| 34 |
-
|
| 35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
.gitignore
ADDED
|
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Byte-compiled / optimized / DLL files
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*$py.class
|
| 5 |
+
|
| 6 |
+
# C extensions
|
| 7 |
+
*.so
|
| 8 |
+
|
| 9 |
+
# Distribution / packaging
|
| 10 |
+
.Python
|
| 11 |
+
build/
|
| 12 |
+
develop-eggs/
|
| 13 |
+
dist/
|
| 14 |
+
downloads/
|
| 15 |
+
eggs/
|
| 16 |
+
.eggs/
|
| 17 |
+
lib/
|
| 18 |
+
lib64/
|
| 19 |
+
parts/
|
| 20 |
+
sdist/
|
| 21 |
+
var/
|
| 22 |
+
wheels/
|
| 23 |
+
pip-wheel-metadata/
|
| 24 |
+
share/python-wheels/
|
| 25 |
+
*.egg-info/
|
| 26 |
+
.installed.cfg
|
| 27 |
+
*.egg
|
| 28 |
+
MANIFEST
|
| 29 |
+
|
| 30 |
+
# PyInstaller
|
| 31 |
+
# Usually these files are written by a python script from a template
|
| 32 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
| 33 |
+
*.manifest
|
| 34 |
+
*.spec
|
| 35 |
+
|
| 36 |
+
# Installer logs
|
| 37 |
+
pip-log.txt
|
| 38 |
+
pip-delete-this-directory.txt
|
| 39 |
+
|
| 40 |
+
# Unit test / coverage reports
|
| 41 |
+
htmlcov/
|
| 42 |
+
.tox/
|
| 43 |
+
.nox/
|
| 44 |
+
.coverage
|
| 45 |
+
.coverage.*
|
| 46 |
+
.cache
|
| 47 |
+
nosetests.xml
|
| 48 |
+
coverage.xml
|
| 49 |
+
*.cover
|
| 50 |
+
*.py,cover
|
| 51 |
+
.hypothesis/
|
| 52 |
+
.pytest_cache/
|
| 53 |
+
|
| 54 |
+
# Translations
|
| 55 |
+
*.mo
|
| 56 |
+
*.pot
|
| 57 |
+
|
| 58 |
+
# Django stuff:
|
| 59 |
+
*.log
|
| 60 |
+
local_settings.py
|
| 61 |
+
db.sqlite3
|
| 62 |
+
db.sqlite3-journal
|
| 63 |
+
|
| 64 |
+
# Flask stuff:
|
| 65 |
+
instance/
|
| 66 |
+
.webassets-cache
|
| 67 |
+
|
| 68 |
+
# Scrapy stuff:
|
| 69 |
+
.scrapy
|
| 70 |
+
|
| 71 |
+
# Sphinx documentation
|
| 72 |
+
docs/_build/
|
| 73 |
+
|
| 74 |
+
# PyBuilder
|
| 75 |
+
target/
|
| 76 |
+
|
| 77 |
+
# Jupyter Notebook
|
| 78 |
+
.ipynb_checkpoints
|
| 79 |
+
|
| 80 |
+
# IPython
|
| 81 |
+
profile_default/
|
| 82 |
+
ipython_config.py
|
| 83 |
+
|
| 84 |
+
# pyenv
|
| 85 |
+
.python-version
|
| 86 |
+
|
| 87 |
+
# pipenv
|
| 88 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
| 89 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
| 90 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
| 91 |
+
# install all needed dependencies.
|
| 92 |
+
#Pipfile.lock
|
| 93 |
+
|
| 94 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
| 95 |
+
__pypackages__/
|
| 96 |
+
|
| 97 |
+
# Celery stuff
|
| 98 |
+
celerybeat-schedule
|
| 99 |
+
celerybeat.pid
|
| 100 |
+
|
| 101 |
+
# SageMath parsed files
|
| 102 |
+
*.sage.py
|
| 103 |
+
|
| 104 |
+
# Environments
|
| 105 |
+
.env
|
| 106 |
+
.venv
|
| 107 |
+
env/
|
| 108 |
+
venv/
|
| 109 |
+
ENV/
|
| 110 |
+
env.bak/
|
| 111 |
+
venv.bak/
|
| 112 |
+
|
| 113 |
+
# Spyder project settings
|
| 114 |
+
.spyderproject
|
| 115 |
+
.spyproject
|
| 116 |
+
|
| 117 |
+
# Rope project settings
|
| 118 |
+
.ropeproject
|
| 119 |
+
|
| 120 |
+
# mkdocs documentation
|
| 121 |
+
/site
|
| 122 |
+
|
| 123 |
+
# mypy
|
| 124 |
+
.mypy_cache/
|
| 125 |
+
.dmypy.json
|
| 126 |
+
dmypy.json
|
| 127 |
+
|
| 128 |
+
# Pyre type checker
|
| 129 |
+
.pyre/
|
| 130 |
+
|
| 131 |
+
models/
|
README.md
CHANGED
|
@@ -1,13 +1,13 @@
|
|
| 1 |
-
---
|
| 2 |
-
title: Transfer Learning Time Series
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
-
sdk: streamlit
|
| 7 |
-
sdk_version: 1.
|
| 8 |
-
app_file: app.py
|
| 9 |
-
pinned: false
|
| 10 |
-
license:
|
| 11 |
-
---
|
| 12 |
-
|
| 13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Transfer Learning Time Series
|
| 3 |
+
emoji: ๐
|
| 4 |
+
colorFrom: indigo
|
| 5 |
+
colorTo: indigo
|
| 6 |
+
sdk: streamlit
|
| 7 |
+
sdk_version: 1.21.0
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
license: bsd-3-clause
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,374 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from time import time
|
| 2 |
+
|
| 3 |
+
import numpy as np
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import plotly.express as px
|
| 6 |
+
import plotly.graph_objects as go
|
| 7 |
+
import streamlit as st
|
| 8 |
+
from datasetsforecast.losses import rmse, mae, smape, mse, mape
|
| 9 |
+
from st_aggrid import AgGrid
|
| 10 |
+
|
| 11 |
+
from src.nf import MODELS, forecast_pretrained_model
|
| 12 |
+
from src.model_descriptions import model_cards
|
| 13 |
+
|
| 14 |
+
DATASETS = {
|
| 15 |
+
"Electricity (Ercot COAST)": "https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/ercot_COAST.csv",
|
| 16 |
+
#"Electriciy (ERCOT, multiple markets)": "https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/ercot_multiple_ts.csv",
|
| 17 |
+
"Web Traffic (Peyton Manning)": "https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/peyton_manning.csv",
|
| 18 |
+
"Demand (AirPassengers)": "https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/air_passengers.csv",
|
| 19 |
+
"Finance (Exchange USD-EUR)": "https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/usdeur.csv",
|
| 20 |
+
}
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
@st.cache_data
|
| 24 |
+
def convert_df(df):
|
| 25 |
+
# IMPORTANT: Cache the conversion to prevent computation on every rerun
|
| 26 |
+
return df.to_csv(index=False).encode("utf-8")
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def plot(df, uid, df_forecast, model):
|
| 30 |
+
figs = []
|
| 31 |
+
figs += [
|
| 32 |
+
go.Scatter(
|
| 33 |
+
x=df["ds"],
|
| 34 |
+
y=df["y"],
|
| 35 |
+
mode="lines",
|
| 36 |
+
marker=dict(color="#236796"),
|
| 37 |
+
legendrank=1,
|
| 38 |
+
name=uid,
|
| 39 |
+
),
|
| 40 |
+
]
|
| 41 |
+
if df_forecast is not None:
|
| 42 |
+
ds_f = df_forecast["ds"].to_list()
|
| 43 |
+
lo = df_forecast["forecast_lo_90"].to_list()
|
| 44 |
+
hi = df_forecast["forecast_hi_90"].to_list()
|
| 45 |
+
figs += [
|
| 46 |
+
go.Scatter(
|
| 47 |
+
x=ds_f + ds_f[::-1],
|
| 48 |
+
y=hi + lo[::-1],
|
| 49 |
+
fill="toself",
|
| 50 |
+
fillcolor="#E7C4C0",
|
| 51 |
+
mode="lines",
|
| 52 |
+
line=dict(color="#E7C4C0"),
|
| 53 |
+
name="Prediction Intervals (90%)",
|
| 54 |
+
legendrank=5,
|
| 55 |
+
opacity=0.5,
|
| 56 |
+
hoverinfo="skip",
|
| 57 |
+
),
|
| 58 |
+
go.Scatter(
|
| 59 |
+
x=ds_f,
|
| 60 |
+
y=df_forecast["forecast"],
|
| 61 |
+
mode="lines",
|
| 62 |
+
legendrank=4,
|
| 63 |
+
marker=dict(color="#E7C4C0"),
|
| 64 |
+
name=f"Forecast {uid}",
|
| 65 |
+
),
|
| 66 |
+
]
|
| 67 |
+
fig = go.Figure(figs)
|
| 68 |
+
fig.update_layout(
|
| 69 |
+
{"plot_bgcolor": "rgba(0, 0, 0, 0)", "paper_bgcolor": "rgba(0, 0, 0, 0)"}
|
| 70 |
+
)
|
| 71 |
+
fig.update_layout(
|
| 72 |
+
title=f"Forecasts for {uid} using Transfer Learning (from {model})",
|
| 73 |
+
legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
|
| 74 |
+
margin=dict(l=20, b=20),
|
| 75 |
+
xaxis=dict(rangeslider=dict(visible=True)),
|
| 76 |
+
)
|
| 77 |
+
initial_range = [df.tail(200)["ds"].iloc[0], ds_f[-1]]
|
| 78 |
+
fig["layout"]["xaxis"].update(range=initial_range)
|
| 79 |
+
return fig
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def st_transfer_learning():
|
| 83 |
+
st.set_page_config(
|
| 84 |
+
page_title="Time Series Visualization",
|
| 85 |
+
page_icon="๐ฎ",
|
| 86 |
+
layout="wide",
|
| 87 |
+
initial_sidebar_state="expanded",
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
st.title(
|
| 91 |
+
"Transfer Learning: Revolutionizing Time Series by Nixtla"
|
| 92 |
+
)
|
| 93 |
+
st.write(
|
| 94 |
+
"<style>div.block-container{padding-top:2rem;}</style>", unsafe_allow_html=True
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
intro = """
|
| 98 |
+
The success of startups like Open AI and Stability highlights the potential for transfer learning (TL) techniques to have a similar impact on the field of time series forecasting.
|
| 99 |
+
|
| 100 |
+
TL can achieve lightning-fast predictions with a fraction of the computational cost by pre-training a flexible model on a large dataset and then using it on another dataset with little to no additional training.
|
| 101 |
+
|
| 102 |
+
In this live demo, you can use pre-trained models by Nixtla (trained on the M4 dataset) to predict your own datasets. You can also see how the models perform on unseen example datasets.
|
| 103 |
+
"""
|
| 104 |
+
st.write(intro)
|
| 105 |
+
|
| 106 |
+
required_cols = ["ds", "y"]
|
| 107 |
+
|
| 108 |
+
with st.sidebar.expander("Dataset", expanded=False):
|
| 109 |
+
data_selection = st.selectbox("Select example dataset", DATASETS.keys())
|
| 110 |
+
data_url = DATASETS[data_selection]
|
| 111 |
+
url_json = st.text_input("Data (you can pass your own url here)", data_url)
|
| 112 |
+
st.write(
|
| 113 |
+
"You can also upload a CSV file like [this one](https://github.com/Nixtla/transfer-learning-time-series/blob/main/datasets/air_passengers.csv)."
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
uploaded_file = st.file_uploader("Upload CSV")
|
| 117 |
+
with st.form("Data"):
|
| 118 |
+
|
| 119 |
+
if uploaded_file is not None:
|
| 120 |
+
df = pd.read_csv(uploaded_file)
|
| 121 |
+
cols = df.columns
|
| 122 |
+
timestamp_col = st.selectbox("Timestamp column", options=cols)
|
| 123 |
+
value_col = st.selectbox("Value column", options=cols)
|
| 124 |
+
else:
|
| 125 |
+
timestamp_col = st.text_input("Timestamp column", value="timestamp")
|
| 126 |
+
value_col = st.text_input("Value column", value="value")
|
| 127 |
+
st.write("You must press Submit each time you want to forecast.")
|
| 128 |
+
submitted = st.form_submit_button("Submit")
|
| 129 |
+
if submitted:
|
| 130 |
+
if uploaded_file is None:
|
| 131 |
+
st.write("Please provide a dataframe.")
|
| 132 |
+
if url_json.endswith("json"):
|
| 133 |
+
df = pd.read_json(url_json)
|
| 134 |
+
else:
|
| 135 |
+
df = pd.read_csv(url_json)
|
| 136 |
+
df = df.rename(
|
| 137 |
+
columns=dict(zip([timestamp_col, value_col], required_cols))
|
| 138 |
+
)
|
| 139 |
+
else:
|
| 140 |
+
# df = pd.read_csv(uploaded_file)
|
| 141 |
+
df = df.rename(
|
| 142 |
+
columns=dict(zip([timestamp_col, value_col], required_cols))
|
| 143 |
+
)
|
| 144 |
+
else:
|
| 145 |
+
if url_json.endswith("json"):
|
| 146 |
+
df = pd.read_json(url_json)
|
| 147 |
+
else:
|
| 148 |
+
df = pd.read_csv(url_json)
|
| 149 |
+
cols = df.columns
|
| 150 |
+
if "unique_id" in cols:
|
| 151 |
+
cols = cols[-2:]
|
| 152 |
+
df = df.rename(columns=dict(zip(cols, required_cols)))
|
| 153 |
+
|
| 154 |
+
if "unique_id" not in df:
|
| 155 |
+
df.insert(0, "unique_id", "ts_0")
|
| 156 |
+
|
| 157 |
+
df["ds"] = pd.to_datetime(df["ds"])
|
| 158 |
+
df = df.sort_values(["unique_id", "ds"])
|
| 159 |
+
|
| 160 |
+
with st.sidebar:
|
| 161 |
+
st.write("Define the pretrained model you want to use to forecast your data")
|
| 162 |
+
model_name = st.selectbox("Select your model", tuple(MODELS.keys()))
|
| 163 |
+
model_file = MODELS[model_name]["model"]
|
| 164 |
+
st.write("Choose how many steps you want to forecast")
|
| 165 |
+
fh = st.number_input("Forecast horizon", value=18)
|
| 166 |
+
st.write(
|
| 167 |
+
"Choose for how many steps the pretrained model will be updated using your data (use 0 for fast computation)"
|
| 168 |
+
)
|
| 169 |
+
max_steps = st.number_input("N-shot inference", value=0)
|
| 170 |
+
|
| 171 |
+
# tabs
|
| 172 |
+
tab_fcst, tab_cv, tab_docs, tab_nixtla = st.tabs(
|
| 173 |
+
[
|
| 174 |
+
"๐ Forecast",
|
| 175 |
+
"๐ Cross Validation",
|
| 176 |
+
"๐ Documentation",
|
| 177 |
+
"๐ฎ Nixtlaverse",
|
| 178 |
+
]
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
uids = df["unique_id"].unique()
|
| 182 |
+
fcst_cols = ["forecast_lo_90", "forecast", "forecast_hi_90"]
|
| 183 |
+
|
| 184 |
+
with tab_fcst:
|
| 185 |
+
uid = uids[0]#st.selectbox("Dataset", options=uids)
|
| 186 |
+
col1, col2 = st.columns([2, 4])
|
| 187 |
+
with col1:
|
| 188 |
+
tab_insample, tab_forecast = st.tabs(
|
| 189 |
+
["Modify input data", "Modify forecasts"]
|
| 190 |
+
)
|
| 191 |
+
with tab_insample:
|
| 192 |
+
df_grid = df.query("unique_id == @uid").drop(columns="unique_id")
|
| 193 |
+
grid_table = AgGrid(
|
| 194 |
+
df_grid,
|
| 195 |
+
editable=True,
|
| 196 |
+
theme="streamlit",
|
| 197 |
+
fit_columns_on_grid_load=True,
|
| 198 |
+
height=360,
|
| 199 |
+
)
|
| 200 |
+
df.loc[df["unique_id"] == uid, "y"] = (
|
| 201 |
+
grid_table["data"].sort_values("ds")["y"].values
|
| 202 |
+
)
|
| 203 |
+
# forecast code
|
| 204 |
+
init = time()
|
| 205 |
+
df_forecast = forecast_pretrained_model(df, model_file, fh, max_steps)
|
| 206 |
+
end = time()
|
| 207 |
+
df_forecast = df_forecast.rename(
|
| 208 |
+
columns=dict(zip(["y_5", "y_50", "y_95"], fcst_cols))
|
| 209 |
+
)
|
| 210 |
+
with tab_forecast:
|
| 211 |
+
df_fcst_grid = df_forecast.query("unique_id == @uid").filter(
|
| 212 |
+
["ds", "forecast"]
|
| 213 |
+
)
|
| 214 |
+
grid_fcst_table = AgGrid(
|
| 215 |
+
df_fcst_grid,
|
| 216 |
+
editable=True,
|
| 217 |
+
theme="streamlit",
|
| 218 |
+
fit_columns_on_grid_load=True,
|
| 219 |
+
height=360,
|
| 220 |
+
)
|
| 221 |
+
changes = (
|
| 222 |
+
df_forecast.query("unique_id == @uid")["forecast"].values
|
| 223 |
+
- grid_fcst_table["data"].sort_values("ds")["forecast"].values
|
| 224 |
+
)
|
| 225 |
+
for col in fcst_cols:
|
| 226 |
+
df_forecast.loc[df_forecast["unique_id"] == uid, col] = (
|
| 227 |
+
df_forecast.loc[df_forecast["unique_id"] == uid, col] - changes
|
| 228 |
+
)
|
| 229 |
+
with col2:
|
| 230 |
+
st.plotly_chart(
|
| 231 |
+
plot(
|
| 232 |
+
df.query("unique_id == @uid"),
|
| 233 |
+
uid,
|
| 234 |
+
df_forecast.query("unique_id == @uid"),
|
| 235 |
+
model_name,
|
| 236 |
+
),
|
| 237 |
+
use_container_width=True,
|
| 238 |
+
)
|
| 239 |
+
st.success(f'Done! Approximate inference time CPU: {0.7*(end-init):.2f} seconds.')
|
| 240 |
+
|
| 241 |
+
with tab_cv:
|
| 242 |
+
col_uid, col_n_windows = st.columns(2)
|
| 243 |
+
uid = uids[0]
|
| 244 |
+
#with col_uid:
|
| 245 |
+
# uid = st.selectbox("Time series to analyse", options=uids, key="uid_cv")
|
| 246 |
+
with col_n_windows:
|
| 247 |
+
n_windows = st.number_input("Cross validation windows", value=1)
|
| 248 |
+
df_forecast = []
|
| 249 |
+
for i_window in range(n_windows, 0, -1):
|
| 250 |
+
test = df.groupby("unique_id").tail(i_window * fh)
|
| 251 |
+
df_forecast_w = forecast_pretrained_model(
|
| 252 |
+
df.drop(test.index), model_file, fh, max_steps
|
| 253 |
+
)
|
| 254 |
+
df_forecast_w = df_forecast_w.rename(
|
| 255 |
+
columns=dict(zip(["y_5", "y_50", "y_95"], fcst_cols))
|
| 256 |
+
)
|
| 257 |
+
df_forecast_w.insert(2, "window", i_window)
|
| 258 |
+
df_forecast.append(df_forecast_w)
|
| 259 |
+
df_forecast = pd.concat(df_forecast)
|
| 260 |
+
df_forecast["ds"] = pd.to_datetime(df_forecast["ds"])
|
| 261 |
+
df_forecast = df_forecast.merge(df, how="left", on=["unique_id", "ds"])
|
| 262 |
+
metrics = [mae, mape, rmse, smape]
|
| 263 |
+
evaluation = df_forecast.groupby(["unique_id", "window"]).apply(
|
| 264 |
+
lambda df: [f'{fn(df["y"].values, df["forecast"]):.2f}' for fn in metrics]
|
| 265 |
+
)
|
| 266 |
+
evaluation = evaluation.rename("eval").reset_index()
|
| 267 |
+
evaluation["eval"] = evaluation["eval"].str.join(",")
|
| 268 |
+
evaluation[["MAE", "MAPE", "RMSE", "sMAPE"]] = evaluation["eval"].str.split(
|
| 269 |
+
",", expand=True
|
| 270 |
+
)
|
| 271 |
+
col_eval, col_plot = st.columns([2, 4])
|
| 272 |
+
with col_eval:
|
| 273 |
+
st.write("Evaluation metrics for each cross validation window")
|
| 274 |
+
st.dataframe(
|
| 275 |
+
evaluation.query("unique_id == @uid")
|
| 276 |
+
.drop(columns=["unique_id", "eval"])
|
| 277 |
+
.set_index("window")
|
| 278 |
+
)
|
| 279 |
+
with col_plot:
|
| 280 |
+
st.plotly_chart(
|
| 281 |
+
plot(
|
| 282 |
+
df.query("unique_id == @uid"),
|
| 283 |
+
uid,
|
| 284 |
+
df_forecast.query("unique_id == @uid").drop(columns="y"),
|
| 285 |
+
model_name,
|
| 286 |
+
),
|
| 287 |
+
use_container_width=True,
|
| 288 |
+
)
|
| 289 |
+
with tab_docs:
|
| 290 |
+
tab_transfer, tab_desc, tab_ref = st.tabs(
|
| 291 |
+
[
|
| 292 |
+
"๐ Transfer Learning",
|
| 293 |
+
"๐ Description of the model",
|
| 294 |
+
"๐ References",
|
| 295 |
+
]
|
| 296 |
+
)
|
| 297 |
+
|
| 298 |
+
with tab_desc:
|
| 299 |
+
model_card_name = MODELS[model_name]["card"]
|
| 300 |
+
st.subheader("Abstract")
|
| 301 |
+
st.write(f"""{model_cards[model_card_name]['Abstract']}""")
|
| 302 |
+
st.subheader("Intended use")
|
| 303 |
+
st.write(f"""{model_cards[model_card_name]['Intended use']}""")
|
| 304 |
+
st.subheader("Secondary use")
|
| 305 |
+
st.write(f"""{model_cards[model_card_name]['Secondary use']}""")
|
| 306 |
+
st.subheader("Limitations")
|
| 307 |
+
st.write(f"""{model_cards[model_card_name]['Limitations']}""")
|
| 308 |
+
st.subheader("Training data")
|
| 309 |
+
st.write(f"""{model_cards[model_card_name]['Training data']}""")
|
| 310 |
+
st.subheader("BibTex/Citation Info")
|
| 311 |
+
st.code(f"""{model_cards[model_card_name]['Citation Info']}""")
|
| 312 |
+
|
| 313 |
+
with tab_transfer:
|
| 314 |
+
transfer_text = """
|
| 315 |
+
Transfer learning refers to the process of pre-training a flexible model on a large dataset and using it later on other data with little to no training. It is one of the most outstanding ๐ achievements in Machine Learning ๐ง and has many practical applications.
|
| 316 |
+
|
| 317 |
+
For time series forecasting, the technique allows you to get lightning-fast predictions โก bypassing the tradeoff between accuracy and speed.
|
| 318 |
+
|
| 319 |
+
[This notebook](https://colab.research.google.com/drive/1uFCO2UBpH-5l2fk3KmxfU0oupsOC6v2n?authuser=0&pli=1#cell-5=) shows how to generate a pre-trained model and store it in a checkpoint to make it available for public use to forecast new time series never seen by the model.
|
| 320 |
+
**You can contribute with your pre-trained models by following [this Notebook](https://github.com/Nixtla/transfer-learning-time-series/blob/main/nbs/Transfer_Learning.ipynb) and sending us an email at federico[at]nixtla.io**
|
| 321 |
+
|
| 322 |
+
You can also take a look at list of pretrained models here. Currently we have this ones avaiable in our [API](https://docs.nixtla.io/reference/neural_transfer_neural_transfer_post) or [Demo](http://nixtla.io/transfer-learning/). You can also download the `.ckpt`:
|
| 323 |
+
- [Pretrained N-HiTS M4 Hourly](https://nixtla-public.s3.amazonaws.com/transfer/pretrained_models/nhits_m4_hourly.ckpt)
|
| 324 |
+
- [Pretrained N-HiTS M4 Hourly (Tiny)](https://nixtla-public.s3.amazonaws.com/transfer/pretrained_models/nhits_m4_hourly_tiny.ckpt)
|
| 325 |
+
- [Pretrained N-HiTS M4 Daily](https://nixtla-public.s3.amazonaws.com/transfer/pretrained_models/nhits_m4_daily.ckpt)
|
| 326 |
+
- [Pretrained N-HiTS M4 Monthly](https://nixtla-public.s3.amazonaws.com/transfer/pretrained_models/nhits_m4_monthly.ckpt)
|
| 327 |
+
- [Pretrained N-HiTS M4 Yearly](https://nixtla-public.s3.amazonaws.com/transfer/pretrained_models/nhits_m4_yearly.ckpt)
|
| 328 |
+
- [Pretrained N-BEATS M4 Hourly](https://nixtla-public.s3.amazonaws.com/transfer/pretrained_models/nbeats_m4_hourly.ckpt)
|
| 329 |
+
- [Pretrained N-BEATS M4 Daily](https://nixtla-public.s3.amazonaws.com/transfer/pretrained_models/nbeats_m4_daily.ckpt)
|
| 330 |
+
- [Pretrained N-BEATS M4 Weekly](https://nixtla-public.s3.amazonaws.com/transfer/pretrained_models/nbeats_m4_weekly.ckpt)
|
| 331 |
+
- [Pretrained N-BEATS M4 Monthly](https://nixtla-public.s3.amazonaws.com/transfer/pretrained_models/nbeats_m4_monthly.ckpt)
|
| 332 |
+
- [Pretrained N-BEATS M4 Yearly](https://nixtla-public.s3.amazonaws.com/transfer/pretrained_models/nbeats_m4_yearly.ckpt)
|
| 333 |
+
"""
|
| 334 |
+
st.write(transfer_text)
|
| 335 |
+
|
| 336 |
+
with tab_ref:
|
| 337 |
+
ref_text = """
|
| 338 |
+
If you are interested in the transfer learning literature applied to time series forecasting, take a look at these papers:
|
| 339 |
+
- [Meta-learning framework with applications to zero-shot time-series forecasting](https://arxiv.org/abs/2002.02887)
|
| 340 |
+
- [N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting](https://arxiv.org/abs/2201.12886)
|
| 341 |
+
"""
|
| 342 |
+
st.write(ref_text)
|
| 343 |
+
|
| 344 |
+
with tab_nixtla:
|
| 345 |
+
nixtla_text = """
|
| 346 |
+
Nixtla is a startup that is building forecasting software for Data Scientists and Devs.
|
| 347 |
+
|
| 348 |
+
We have been developing different open source libraries for machine learning, statistical and deep learning forecasting.
|
| 349 |
+
|
| 350 |
+
In our [GitHub repo](https://github.com/Nixtla), you can find the projects that support this APP.
|
| 351 |
+
"""
|
| 352 |
+
st.write(nixtla_text)
|
| 353 |
+
st.image(
|
| 354 |
+
"https://files.readme.io/168cdb2-Screen_Shot_2022-09-30_at_10.40.09.png",
|
| 355 |
+
width=800,
|
| 356 |
+
)
|
| 357 |
+
|
| 358 |
+
with st.sidebar:
|
| 359 |
+
st.download_button(
|
| 360 |
+
label="Download historical data as CSV",
|
| 361 |
+
data=convert_df(df),
|
| 362 |
+
file_name="history.csv",
|
| 363 |
+
mime="text/csv",
|
| 364 |
+
)
|
| 365 |
+
st.download_button(
|
| 366 |
+
label="Download forecasts as CSV",
|
| 367 |
+
data=convert_df(df_forecast),
|
| 368 |
+
file_name="forecasts.csv",
|
| 369 |
+
mime="text/csv",
|
| 370 |
+
)
|
| 371 |
+
|
| 372 |
+
|
| 373 |
+
if __name__ == "__main__":
|
| 374 |
+
st_transfer_learning()
|
requirements.txt
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
datasetsforecast
|
| 2 |
+
fire
|
| 3 |
+
neuralforecast==0.1.0
|
| 4 |
+
pandas
|
| 5 |
+
plotly
|
| 6 |
+
python-dotenv
|
| 7 |
+
torch==2.3.0
|
| 8 |
+
pytorch-lightning
|
| 9 |
+
statsforecast
|
| 10 |
+
streamlit
|
| 11 |
+
streamlit-aggrid
|
| 12 |
+
hyperopt
|