Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -251,17 +251,19 @@ def transfer_learning_forecasting():
|
|
251 |
nhits_model, timesnet_model, lstm_model, tft_model = select_model_based_on_frequency(frequency, nhits_models, timesnet_models, lstm_models, tft_models)
|
252 |
forecast_results = {}
|
253 |
|
254 |
-
|
255 |
-
if model_choice == "NHITS":
|
256 |
-
forecast_results['NHITS'] = generate_forecast(nhits_model, df)
|
257 |
-
elif model_choice == "TimesNet":
|
258 |
-
forecast_results['TimesNet'] = generate_forecast(timesnet_model, df)
|
259 |
-
elif model_choice == "LSTM":
|
260 |
-
forecast_results['LSTM'] = generate_forecast(lstm_model, df)
|
261 |
-
elif model_choice == "TFT":
|
262 |
-
forecast_results['TFT'] = generate_forecast(tft_model, df)
|
263 |
|
264 |
if st.sidebar.button("Submit"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
for model_name, forecast_df in forecast_results.items():
|
266 |
plot_forecasts(forecast_df, df, f'{model_name} Forecast for {y_col}')
|
267 |
|
|
|
251 |
nhits_model, timesnet_model, lstm_model, tft_model = select_model_based_on_frequency(frequency, nhits_models, timesnet_models, lstm_models, tft_models)
|
252 |
forecast_results = {}
|
253 |
|
254 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
|
256 |
if st.sidebar.button("Submit"):
|
257 |
+
start_time = time.time() # Start timing
|
258 |
+
if model_choice == "NHITS":
|
259 |
+
forecast_results['NHITS'] = generate_forecast(nhits_model, df)
|
260 |
+
elif model_choice == "TimesNet":
|
261 |
+
forecast_results['TimesNet'] = generate_forecast(timesnet_model, df)
|
262 |
+
elif model_choice == "LSTM":
|
263 |
+
forecast_results['LSTM'] = generate_forecast(lstm_model, df)
|
264 |
+
elif model_choice == "TFT":
|
265 |
+
forecast_results['TFT'] = generate_forecast(tft_model, df)
|
266 |
+
|
267 |
for model_name, forecast_df in forecast_results.items():
|
268 |
plot_forecasts(forecast_df, df, f'{model_name} Forecast for {y_col}')
|
269 |
|