Azzan Dwi Riski
commited on
Commit
·
c329d21
1
Parent(s):
50c7c91
initial commit
Browse files- Dockerfile +44 -0
- app.py +306 -0
- requirements +11 -0
Dockerfile
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.10-slim
|
| 2 |
+
|
| 3 |
+
# Install essential packages
|
| 4 |
+
RUN apt-get update && apt-get install -y \
|
| 5 |
+
build-essential \
|
| 6 |
+
curl \
|
| 7 |
+
software-properties-common \
|
| 8 |
+
git \
|
| 9 |
+
tesseract-ocr \
|
| 10 |
+
tesseract-ocr-ind \
|
| 11 |
+
libgl1-mesa-glx \
|
| 12 |
+
libglib2.0-0 \
|
| 13 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 14 |
+
|
| 15 |
+
# Install nodejs (required for Playwright)
|
| 16 |
+
RUN curl -sL https://deb.nodesource.com/setup_18.x | bash - && \
|
| 17 |
+
apt-get install -y nodejs
|
| 18 |
+
|
| 19 |
+
# Set up working directory
|
| 20 |
+
WORKDIR /app
|
| 21 |
+
|
| 22 |
+
# Install Python dependencies
|
| 23 |
+
COPY requirements.txt /app/
|
| 24 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 25 |
+
|
| 26 |
+
# Install Playwright
|
| 27 |
+
RUN pip install playwright && \
|
| 28 |
+
playwright install chromium && \
|
| 29 |
+
playwright install-deps chromium
|
| 30 |
+
|
| 31 |
+
# Copy application code
|
| 32 |
+
COPY . /app/
|
| 33 |
+
|
| 34 |
+
# Create directory for screenshots
|
| 35 |
+
RUN mkdir -p screenshots
|
| 36 |
+
|
| 37 |
+
# Create directory for models
|
| 38 |
+
RUN mkdir -p models
|
| 39 |
+
|
| 40 |
+
# Make sure the app runs at port 7860 (Gradio default)
|
| 41 |
+
EXPOSE 7860
|
| 42 |
+
|
| 43 |
+
# Start the application
|
| 44 |
+
CMD ["python", "app.py"]
|
app.py
ADDED
|
@@ -0,0 +1,306 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
import re
|
| 4 |
+
import time
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
from PIL import Image
|
| 8 |
+
import pytesseract
|
| 9 |
+
from playwright.sync_api import sync_playwright
|
| 10 |
+
import asyncio
|
| 11 |
+
from transformers import AutoTokenizer
|
| 12 |
+
from torchvision import transforms
|
| 13 |
+
from torchvision import models
|
| 14 |
+
from torchvision.transforms import functional as F
|
| 15 |
+
import pandas as pd
|
| 16 |
+
from huggingface_hub import hf_hub_download
|
| 17 |
+
import warnings
|
| 18 |
+
warnings.filterwarnings("ignore")
|
| 19 |
+
from pathlib import Path
|
| 20 |
+
|
| 21 |
+
# --- Setup ---
|
| 22 |
+
|
| 23 |
+
# Device setup
|
| 24 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 25 |
+
print(f"Using device: {device}")
|
| 26 |
+
|
| 27 |
+
# Load tokenizer
|
| 28 |
+
tokenizer = AutoTokenizer.from_pretrained('indobenchmark/indobert-base-p1')
|
| 29 |
+
|
| 30 |
+
# Image transformation
|
| 31 |
+
class ResizePadToSquare:
|
| 32 |
+
def __init__(self, target_size=300):
|
| 33 |
+
self.target_size = target_size
|
| 34 |
+
|
| 35 |
+
def __call__(self, img):
|
| 36 |
+
img = img.convert("RGB")
|
| 37 |
+
img.thumbnail((self.target_size, self.target_size), Image.BILINEAR)
|
| 38 |
+
delta_w = self.target_size - img.size[0]
|
| 39 |
+
delta_h = self.target_size - img.size[1]
|
| 40 |
+
padding = (delta_w // 2, delta_h // 2, delta_w - delta_w // 2, delta_h - delta_h // 2)
|
| 41 |
+
img = F.pad(img, padding, fill=0, padding_mode='constant')
|
| 42 |
+
return img
|
| 43 |
+
|
| 44 |
+
transform = transforms.Compose([
|
| 45 |
+
ResizePadToSquare(300),
|
| 46 |
+
transforms.ToTensor(),
|
| 47 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
| 48 |
+
std=[0.229, 0.224, 0.225]),
|
| 49 |
+
])
|
| 50 |
+
|
| 51 |
+
# Screenshot folder
|
| 52 |
+
SCREENSHOT_DIR = "screenshots"
|
| 53 |
+
os.makedirs(SCREENSHOT_DIR, exist_ok=True)
|
| 54 |
+
|
| 55 |
+
# Set Tesseract language
|
| 56 |
+
pytesseract.pytesseract.tesseract_cmd = '/usr/bin/tesseract' # Path to tesseract in Docker
|
| 57 |
+
print("Tesseract OCR initialized.")
|
| 58 |
+
|
| 59 |
+
# --- Model ---
|
| 60 |
+
|
| 61 |
+
class LateFusionModel(nn.Module):
|
| 62 |
+
def __init__(self, image_model, text_model):
|
| 63 |
+
super(LateFusionModel, self).__init__()
|
| 64 |
+
self.image_model = image_model
|
| 65 |
+
self.text_model = text_model
|
| 66 |
+
self.image_weight = nn.Parameter(torch.tensor(0.5))
|
| 67 |
+
self.text_weight = nn.Parameter(torch.tensor(0.5))
|
| 68 |
+
|
| 69 |
+
def forward(self, images, input_ids, attention_mask):
|
| 70 |
+
with torch.no_grad():
|
| 71 |
+
image_logits = self.image_model(images).squeeze(1)
|
| 72 |
+
text_logits = self.text_model(input_ids=input_ids, attention_mask=attention_mask).logits.squeeze(1)
|
| 73 |
+
|
| 74 |
+
weights = torch.softmax(torch.stack([self.image_weight, self.text_weight]), dim=0)
|
| 75 |
+
fused_logits = weights[0] * image_logits + weights[1] * text_logits
|
| 76 |
+
|
| 77 |
+
return fused_logits, image_logits, text_logits, weights
|
| 78 |
+
|
| 79 |
+
# Load model
|
| 80 |
+
model_path = "models/best_fusion_model.pt"
|
| 81 |
+
if os.path.exists(model_path):
|
| 82 |
+
fusion_model = torch.load(model_path, map_location=device, weights_only=False)
|
| 83 |
+
else:
|
| 84 |
+
model_path = hf_hub_download(repo_id="azzandr/gambling-fusion-model", filename="best_fusion_model.pt")
|
| 85 |
+
fusion_model = torch.load(model_path, map_location=device, weights_only=False)
|
| 86 |
+
|
| 87 |
+
fusion_model.to(device)
|
| 88 |
+
fusion_model.eval()
|
| 89 |
+
print("Fusion model loaded successfully!")
|
| 90 |
+
|
| 91 |
+
# Load Image-Only Model
|
| 92 |
+
# Load image model from state_dict
|
| 93 |
+
image_model_path = "models/best_image_model_Adam_lr0.0001_bs32_state_dict.pt"
|
| 94 |
+
if os.path.exists(image_model_path):
|
| 95 |
+
image_only_model = models.efficientnet_b3(weights=models.EfficientNet_B3_Weights.DEFAULT)
|
| 96 |
+
num_features = image_only_model.classifier[1].in_features
|
| 97 |
+
image_only_model.classifier = nn.Linear(num_features, 1)
|
| 98 |
+
image_only_model.load_state_dict(torch.load(image_model_path, map_location=device))
|
| 99 |
+
image_only_model.to(device)
|
| 100 |
+
image_only_model.eval()
|
| 101 |
+
print("Image-only model loaded from state_dict successfully!")
|
| 102 |
+
else:
|
| 103 |
+
# Download from HuggingFace if local file doesn't exist
|
| 104 |
+
image_model_path = hf_hub_download(repo_id="azzandr/gambling-fusion-model",
|
| 105 |
+
filename="best_image_model_Adam_lr0.0001_bs32_state_dict.pt")
|
| 106 |
+
image_only_model = models.efficientnet_b3(weights=models.EfficientNet_B3_Weights.DEFAULT)
|
| 107 |
+
num_features = image_only_model.classifier[1].in_features
|
| 108 |
+
image_only_model.classifier = nn.Linear(num_features, 1)
|
| 109 |
+
image_only_model.load_state_dict(torch.load(image_model_path, map_location=device))
|
| 110 |
+
image_only_model.to(device)
|
| 111 |
+
image_only_model.eval()
|
| 112 |
+
print("Image-only model loaded from HuggingFace successfully!")
|
| 113 |
+
|
| 114 |
+
# --- Functions ---
|
| 115 |
+
def clean_text(text):
|
| 116 |
+
exceptions = {
|
| 117 |
+
"di", "ke", "ya"
|
| 118 |
+
}
|
| 119 |
+
# ----- BASIC CLEANING -----
|
| 120 |
+
text = re.sub(r"http\S+", "", text) # Hapus URL
|
| 121 |
+
text = re.sub(r"\n", " ", text) # Ganti newline dengan spasi
|
| 122 |
+
text = re.sub(r"[^a-zA-Z']", " ", text) # Hanya sisakan huruf dan apostrof
|
| 123 |
+
text = re.sub(r"\s{2,}", " ", text).strip().lower() # Hapus spasi ganda, ubah ke lowercase
|
| 124 |
+
|
| 125 |
+
# ----- FILTERING -----
|
| 126 |
+
words = text.split()
|
| 127 |
+
filtered_words = [
|
| 128 |
+
w for w in words
|
| 129 |
+
if (len(w) > 2 or w in exceptions) # Simpan kata >2 huruf atau ada di exceptions
|
| 130 |
+
]
|
| 131 |
+
text = ' '.join(filtered_words)
|
| 132 |
+
|
| 133 |
+
# ----- REMOVE UNWANTED PATTERNS -----
|
| 134 |
+
text = re.sub(r'\b[aeiou]+\b', '', text) # Hapus kata semua vokal (panjang berapa pun)
|
| 135 |
+
text = re.sub(r'\b[^aeiou\s]+\b', '', text) # Hapus kata semua konsonan (panjang berapa pun)
|
| 136 |
+
text = re.sub(r'\b\w{20,}\b', '', text) # Hapus kata sangat panjang (≥20 huruf)
|
| 137 |
+
text = re.sub(r'\s+', ' ', text).strip() # Bersihkan spasi ekstra
|
| 138 |
+
|
| 139 |
+
# check words number
|
| 140 |
+
if len(text.split()) < 5:
|
| 141 |
+
print(f"Cleaned text too short ({len(text.split())} words). Ignoring text.")
|
| 142 |
+
return "" # empty return to use image-only
|
| 143 |
+
return text
|
| 144 |
+
|
| 145 |
+
def take_screenshot(url):
|
| 146 |
+
filename = url.replace('https://', '').replace('http://', '').replace('/', '_').replace('.', '_') + '.png'
|
| 147 |
+
filepath = os.path.join(SCREENSHOT_DIR, filename)
|
| 148 |
+
|
| 149 |
+
try:
|
| 150 |
+
print(f"Taking screenshot with Playwright for URL: {url}")
|
| 151 |
+
with sync_playwright() as p:
|
| 152 |
+
browser = p.chromium.launch()
|
| 153 |
+
page = browser.new_page(viewport={"width": 1280, "height": 800})
|
| 154 |
+
|
| 155 |
+
# Add timeout and navigation options
|
| 156 |
+
page.set_default_timeout(60000) # 60 seconds timeout
|
| 157 |
+
|
| 158 |
+
# Navigate to the URL with wait until options
|
| 159 |
+
page.goto(url, wait_until="networkidle", timeout=60000)
|
| 160 |
+
|
| 161 |
+
# Wait a bit for dynamic content to load
|
| 162 |
+
page.wait_for_timeout(3000)
|
| 163 |
+
|
| 164 |
+
# Take full page screenshot
|
| 165 |
+
page.screenshot(path=filepath, full_page=True)
|
| 166 |
+
browser.close()
|
| 167 |
+
|
| 168 |
+
print(f"Screenshot taken for URL: {url}")
|
| 169 |
+
return filepath
|
| 170 |
+
except Exception as e:
|
| 171 |
+
print(f"Error taking screenshot with Playwright: {e}")
|
| 172 |
+
return None
|
| 173 |
+
|
| 174 |
+
def resize_if_needed(image_path, max_mb=1, target_width=720):
|
| 175 |
+
file_size = os.path.getsize(image_path) / (1024 * 1024) # dalam MB
|
| 176 |
+
if file_size > max_mb:
|
| 177 |
+
try:
|
| 178 |
+
with Image.open(image_path) as img:
|
| 179 |
+
width, height = img.size
|
| 180 |
+
if width > target_width:
|
| 181 |
+
ratio = target_width / float(width)
|
| 182 |
+
new_height = int((float(height) * float(ratio)))
|
| 183 |
+
img = img.resize((target_width, new_height), Image.Resampling.LANCZOS)
|
| 184 |
+
img.save(image_path, optimize=True, quality=85)
|
| 185 |
+
print(f"Image resized to {target_width}x{new_height}")
|
| 186 |
+
except Exception as e:
|
| 187 |
+
print(f"Resize error: {e}")
|
| 188 |
+
|
| 189 |
+
def extract_text_from_image(image_path):
|
| 190 |
+
try:
|
| 191 |
+
resize_if_needed(image_path, max_mb=1, target_width=720)
|
| 192 |
+
|
| 193 |
+
# Use Tesseract OCR with Indonesian language
|
| 194 |
+
text = pytesseract.image_to_string(Image.open(image_path), lang='ind')
|
| 195 |
+
print(f"OCR text extracted with Tesseract: {len(text)} characters")
|
| 196 |
+
|
| 197 |
+
return text.strip()
|
| 198 |
+
except Exception as e:
|
| 199 |
+
print(f"Tesseract OCR error: {e}")
|
| 200 |
+
return ""
|
| 201 |
+
|
| 202 |
+
def prepare_data_for_model(image_path, text):
|
| 203 |
+
image = Image.open(image_path)
|
| 204 |
+
image_tensor = transform(image).unsqueeze(0).to(device)
|
| 205 |
+
|
| 206 |
+
clean_text_data = clean_text(text)
|
| 207 |
+
encoding = tokenizer.encode_plus(
|
| 208 |
+
clean_text_data,
|
| 209 |
+
add_special_tokens=True,
|
| 210 |
+
max_length=128,
|
| 211 |
+
padding='max_length',
|
| 212 |
+
truncation=True,
|
| 213 |
+
return_tensors='pt'
|
| 214 |
+
)
|
| 215 |
+
|
| 216 |
+
input_ids = encoding['input_ids'].to(device)
|
| 217 |
+
attention_mask = encoding['attention_mask'].to(device)
|
| 218 |
+
|
| 219 |
+
return image_tensor, input_ids, attention_mask
|
| 220 |
+
|
| 221 |
+
def predict_single_url(url):
|
| 222 |
+
if not url.startswith(('http://', 'https://')):
|
| 223 |
+
url = 'https://' + url
|
| 224 |
+
|
| 225 |
+
screenshot_path = take_screenshot(url)
|
| 226 |
+
if not screenshot_path:
|
| 227 |
+
return f"Error: Failed to take screenshot for {url}", None
|
| 228 |
+
|
| 229 |
+
text = extract_text_from_image(screenshot_path)
|
| 230 |
+
|
| 231 |
+
if not text.strip(): # Jika text kosong
|
| 232 |
+
print(f"No OCR text found for {url}. Using Image-Only Model.")
|
| 233 |
+
image = Image.open(screenshot_path)
|
| 234 |
+
image_tensor = transform(image).unsqueeze(0).to(device)
|
| 235 |
+
|
| 236 |
+
with torch.no_grad():
|
| 237 |
+
image_logits = image_only_model(image_tensor).squeeze(1)
|
| 238 |
+
image_probs = torch.sigmoid(image_logits)
|
| 239 |
+
|
| 240 |
+
threshold = 0.6
|
| 241 |
+
is_gambling = image_probs[0] > threshold
|
| 242 |
+
|
| 243 |
+
label = "Gambling" if is_gambling else "Non-Gambling"
|
| 244 |
+
confidence = image_probs[0].item() if is_gambling else 1 - image_probs[0].item()
|
| 245 |
+
print(f"[Image-Only] URL: {url}")
|
| 246 |
+
print(f"Prediction: {label} | Confidence: {confidence:.2f}\n")
|
| 247 |
+
return label, f"Confidence: {confidence:.2f}"
|
| 248 |
+
|
| 249 |
+
else:
|
| 250 |
+
image_tensor, input_ids, attention_mask = prepare_data_for_model(screenshot_path, text)
|
| 251 |
+
|
| 252 |
+
with torch.no_grad():
|
| 253 |
+
fused_logits, image_logits, text_logits, weights = fusion_model(image_tensor, input_ids, attention_mask)
|
| 254 |
+
fused_probs = torch.sigmoid(fused_logits)
|
| 255 |
+
image_probs = torch.sigmoid(image_logits)
|
| 256 |
+
text_probs = torch.sigmoid(text_logits)
|
| 257 |
+
|
| 258 |
+
threshold = 0.6
|
| 259 |
+
is_gambling = fused_probs[0] > threshold
|
| 260 |
+
|
| 261 |
+
label = "Gambling" if is_gambling else "Non-Gambling"
|
| 262 |
+
confidence = fused_probs[0].item() if is_gambling else 1 - fused_probs[0].item()
|
| 263 |
+
|
| 264 |
+
# ✨ Log detail
|
| 265 |
+
print(f"[Fusion Model] URL: {url}")
|
| 266 |
+
print(f"Image Model Prediction Probability: {image_probs[0]:.2f}")
|
| 267 |
+
print(f"Text Model Prediction Probability: {text_probs[0]:.2f}")
|
| 268 |
+
print(f"Fusion Final Prediction: {label} | Confidence: {confidence:.2f}\n")
|
| 269 |
+
|
| 270 |
+
return label, f"Confidence: {confidence:.2f}"
|
| 271 |
+
|
| 272 |
+
def predict_batch_urls(file_obj):
|
| 273 |
+
results = []
|
| 274 |
+
content = file_obj.read().decode('utf-8')
|
| 275 |
+
urls = [line.strip() for line in content.splitlines() if line.strip()]
|
| 276 |
+
for url in urls:
|
| 277 |
+
label, confidence = predict_single_url(url)
|
| 278 |
+
results.append({"url": url, "label": label, "confidence": confidence})
|
| 279 |
+
|
| 280 |
+
df = pd.DataFrame(results)
|
| 281 |
+
print(f"Batch prediction completed for {len(urls)} URLs.")
|
| 282 |
+
return df
|
| 283 |
+
|
| 284 |
+
# --- Gradio App ---
|
| 285 |
+
|
| 286 |
+
with gr.Blocks() as app:
|
| 287 |
+
gr.Markdown("# 🕵️ Gambling Website Detection (URL Based)")
|
| 288 |
+
gr.Markdown("### Using Playwright & Tesseract OCR")
|
| 289 |
+
|
| 290 |
+
with gr.Tab("Single URL"):
|
| 291 |
+
url_input = gr.Textbox(label="Enter Website URL")
|
| 292 |
+
predict_button = gr.Button("Predict")
|
| 293 |
+
label_output = gr.Label()
|
| 294 |
+
confidence_output = gr.Textbox(label="Confidence", interactive=False)
|
| 295 |
+
|
| 296 |
+
predict_button.click(fn=predict_single_url, inputs=url_input, outputs=[label_output, confidence_output])
|
| 297 |
+
|
| 298 |
+
with gr.Tab("Batch URLs"):
|
| 299 |
+
file_input = gr.File(label="Upload .txt file with URLs (one per line)")
|
| 300 |
+
batch_predict_button = gr.Button("Batch Predict")
|
| 301 |
+
batch_output = gr.DataFrame()
|
| 302 |
+
|
| 303 |
+
batch_predict_button.click(fn=predict_batch_urls, inputs=file_input, outputs=batch_output)
|
| 304 |
+
|
| 305 |
+
if __name__ == "__main__":
|
| 306 |
+
app.launch(server_name="0.0.0.0", server_port=7860)
|
requirements
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
gradio
|
| 3 |
+
torch
|
| 4 |
+
torchvision
|
| 5 |
+
pytesseract
|
| 6 |
+
playwright
|
| 7 |
+
Pillow
|
| 8 |
+
transformers
|
| 9 |
+
pandas
|
| 10 |
+
huggingface_hub
|
| 11 |
+
python-dotenv
|