File size: 7,517 Bytes
799674c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9257999
799674c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9257999
799674c
 
 
 
b740ca9
799674c
 
 
 
 
 
 
 
 
 
 
 
 
9257999
799674c
 
 
9257999
 
 
 
 
 
 
 
 
 
799674c
 
9257999
799674c
 
 
9257999
 
 
 
 
799674c
 
 
 
b740ca9
799674c
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
"""
Competency questions analysis functions
Partially inherited from [idea](https://github.com/polifonia-project/idea)
"""

import ast
import io
import re
from collections import defaultdict

import numpy as np

from PIL import Image
from matplotlib import pyplot as plt

from sentence_transformers import SentenceTransformer
from sklearn.cluster import AgglomerativeClustering, HDBSCAN
from scipy.cluster.hierarchy import dendrogram

from ontochat.chatbot import chat_completion


def preprocess_competency_questions(cqs):
    # preprocess competency questions: string -> list of strings
    cqs = cqs.split("\n")
    # # keep index
    # cqs = [re.split(r'\.\s', cq, 1) for cq in cqs]
    # cqs = [{cq[0]: cq[1]} for cq in cqs]
    # cqs = [re.split(r'\.\s', cq, 1)[1] for cq in cqs]

    # clean
    cleaned_cqs = []
    for q in cqs:  # FIXME to move
        # Collapse complex questions in a sentence
        q = q.replace("\n", "; ")
        # Remove tabular occurrences for metadata
        q = q.replace("\t", " ")
        # Collapse multiple empty spaces
        q = re.sub(r"[ ]+", " ", q)
        # Discard inconsistent punctuation
        q = re.sub(r";[ ]*;", ";", q)
        cleaned_cqs.append(q)

    return cleaned_cqs


def compute_embeddings(cqs, model="all-MiniLM-L6-v2", device="cpu"):
    """
    Compute sentence-level embeddings of competency questions

    :param cqs:
    :param model:
    :param device:
    :return:
    """
    cleaned_cqs = preprocess_competency_questions(cqs)

    model = SentenceTransformer(model, device=device)
    embeddings = model.encode(cleaned_cqs)

    # Normalisation of CQ embeddings to unit length
    embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True)

    return cleaned_cqs, embeddings


def agglomerative_clustering(cqs, embeddings, n_clusters=None, metric="euclidean", distance_threshold=None):
    """

    :param cqs:
    :param embeddings:
    :param n_clusters:
    :param metric:
    :param distance_threshold:
    :return:
    """
    clustering_model = AgglomerativeClustering(
        n_clusters=n_clusters,
        metric=metric,
        distance_threshold=distance_threshold,
        compute_distances=True
    )
    clustering_model.fit(embeddings)
    cluster_assignment = clustering_model.labels_

    clustered_cqs = defaultdict(list)
    for sentence_id, cluster_id in enumerate(cluster_assignment):
        clustered_cqs[str(cluster_id)].append(cqs[sentence_id])

    pil_image = plot_dendrogram(
        clustering_model,
        orientation='right',
        labels=list(range(1, len(cqs) + 1)),
        # labels=cqs,
        truncate_mode=None,
        # p=3,
        show_leaf_counts=False,
    )

    return clustered_cqs, pil_image


def plot_dendrogram(model, **kwargs):
    """ Create linkage matrix and then plot the dendrogram
    source: https://scikit-learn.org/stable/auto_examples/cluster/plot_agglomerative_dendrogram.html

    :param model:
    :param kwargs:
    :return:
    """
    # create the counts of samples under each node
    counts = np.zeros(model.children_.shape[0])
    n_samples = len(model.labels_)
    for i, merge in enumerate(model.children_):
        current_count = 0
        for child_idx in merge:
            if child_idx < n_samples:
                current_count += 1  # leaf node
            else:
                current_count += counts[child_idx - n_samples]
        counts[i] = current_count

    linkage_matrix = np.column_stack(
        [model.children_, model.distances_, counts]
    ).astype(float)

    # Plot the corresponding dendrogram
    plt.tight_layout()
    # plt.figure(figsize=(40, 20))
    dendrogram(linkage_matrix, **kwargs)
    # plt.subplots_adjust(left=0.25, right=1.025, top=0.9, bottom=0.075)
    # plt.savefig(figsave_path)
    # plt.show()
    # convert the figure into a PIL image
    fig = plt.gcf()
    buf = io.BytesIO()
    fig.savefig(buf)
    buf.seek(0)
    return Image.open(buf)


def response_parser(response):
    try:
        response = ast.literal_eval(response)
    except (ValueError, TypeError, SyntaxError):
        response = ""
    return response


def llm_cq_clustering(cqs, n_clusters, api_key, paraphrase_detection=False):
    """

    :param cqs:
    :param n_clusters:
    :param api_key:
    :param paraphrase_detection:
    :return:
    """
    conversation_history = [
        {"role": "system", "content": "You are an ontology engineer."}
    ]
    # paraphrase detection before clustering
    if paraphrase_detection:
        # 1. paraphrase detection
        prompt_1 = "Perform paraphrase detection for the following competency questions: {}. " \
                   "Return a Python list of duplicate competency questions.".format(cqs)

        conversation_history.append({"role": "user", "content": prompt_1})
        response = chat_completion(api_key, conversation_history)
        print("{} CQs remaining after paraphrase detection.".format(len(cqs) - len(response_parser(response))))

        # 2. clustering
        if n_clusters:
            prompt_2 = f"Clustering the competency questions into {n_clusters} clusters based on their topics. " \
                        "Keep the granularity of the topic in each cluster at a similar level. " \
                        "Return in JSON format, such as: {'cluster 1 topic': " \
                        "['competency question 1', 'competency question 2']}:"
        else:
            prompt_2 = f"Clustering the competency questions into clusters based on their topics. " \
                       "Keep the granularity of the topic in each cluster at a similar level. " \
                       "Return in JSON format, such as: {'cluster 1 topic': " \
                       "['competency question 1', 'competency question 2']}:"
        conversation_history.append({"role": "assistant", "content": response})  # previous response
        conversation_history.append({"role": "user", "content": prompt_2})
        response = chat_completion(api_key, conversation_history)
        # print("Output is: \"{}\"".format(response))

    else:  # clustering only
        if n_clusters:
            prompt_2 = f"Given the competency questions: {cqs}, clustering them into {n_clusters} clusters based on " \
                       f"the topics."
        else:
            prompt_2 = f"Given the competency questions: {cqs}, clustering them into clusters based on the topics."
        prompt_2 += "Keep the granularity of the topic in each cluster at a similar level. " \
                    "Return in JSON format, such as: {'cluster 1 topic': " \
                    "['competency question 1', 'competency question 2']}:"
        conversation_history.append({"role": "user", "content": prompt_2})
        response = chat_completion(api_key, conversation_history)
        # print("Output is: \"{}\"".format(response))

    # # 3. assign labels
    # prompt_2 = "Clustering the competency questions based on their topics. Return in JSON format, " \
    #            "such as: {'cluster 1 topic': ['competency question 1', 'competency question 2']}:"
    # conversation_history.append({"role": "assistant", "content": response})  # previous response
    # conversation_history.append({"role": "user", "content": prompt_2})
    # response = chat_completion(conversation_history)
    # response = response.choices[0].message.content
    # print("Output is: \"{}\"".format(response))

    return response_parser(response), Image.new("RGB", (640, 480), (255, 255, 255))