File size: 20,902 Bytes
8b79aed
 
 
 
2d6ef72
 
 
 
 
 
8b79aed
 
2d6ef72
8b79aed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d6ef72
8b79aed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d6ef72
8b79aed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d6ef72
8b79aed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d6ef72
8b79aed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d6ef72
8b79aed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d6ef72
8b79aed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d6ef72
8b79aed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d6ef72
8b79aed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d6ef72
8b79aed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d6ef72
8b79aed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d6ef72
8b79aed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d6ef72
8b79aed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d6ef72
8b79aed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d6ef72
8b79aed
2d6ef72
8b79aed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d6ef72
8b79aed
 
 
 
 
 
 
 
 
 
2d6ef72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
import os
from langchain.agents import tool
from langchain_community.chat_models import ChatOpenAI
import pandas as pd
from langchain_core.utils.function_calling import convert_to_openai_function
from langchain.schema.runnable import RunnablePassthrough
from langchain.agents.format_scratchpad import format_to_openai_functions
from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser
from langchain.agents import AgentExecutor
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
from config import settings

MEMORY = None


def get_embeddings(text_list):
    encoded_input = settings.tokenizer(
        text_list, padding=True, truncation=True, return_tensors="pt"
    )
    # encoded_input = {k: v.to(device) for k, v in encoded_input.items()}
    encoded_input = {k: v for k, v in encoded_input.items()}
    model_output = settings.model(**encoded_input)
    
    cls_pool = model_output.last_hidden_state[:, 0]
    return cls_pool

def reg(chat):
  question_embedding = get_embeddings([chat]).cpu().detach().numpy()
  scores, samples = settings.dataset.get_nearest_examples(
      "embeddings", question_embedding, k=5
  )
  samples_df = pd.DataFrame.from_dict(samples)
  # print(samples_df.columns)
  samples_df["scores"] = scores
  samples_df.sort_values("scores", ascending=False, inplace=True)
  return samples_df[['title', 'cover_image', 'referral_link', 'category_id']]


@tool("MOXICASTS-questions", )
def moxicast(prompt: str) -> str:
    """this function is used when user wants to know about MOXICASTS feature.MOXICASTS is a feature of BMoxi for Advice and guidance on life topics.

    Args:

        prompt (string): user query



    Returns:

        string: answer of the query

    """
    context = "BMOXI app is designed for teenage girls where they can listen some musics explore some contents had 1:1 mentoring sessions with all above features for helping them in their hard times. MOXICASTS is a feature of BMoxi for Advice and guidance on life topics."
    llm = ChatOpenAI(model=settings.OPENAI_MODEL, openai_api_key=settings.OPENAI_KEY, temperature=0.7)
    # Define the system prompt
    system_template = """ you are going to make answer only using this context not use any other information

   context : {context}

    Input: {input}

    """
    response = llm.invoke(system_template.format(context=context, input=prompt))

    return response.content

@tool("PEP-TALKPODS-questions", )
def peptalks(prompt: str) -> str:
    """this function is used when user wants to know about PEP TALK PODS feature.PEP TALK PODS: Quick audio pep talks for boosting mood and motivation.

    Args:

        prompt (string): user query



    Returns:

        string: answer of the query

    """
    context = "BMOXI app is designed for teenage girls where they can listen some musics explore some contents had 1:1 mentoring sessions with all above features for helping them in their hard times. PEP TALK PODS: Quick audio pep talks for boosting mood and motivation."
    llm = ChatOpenAI(model=settings.OPENAI_MODEL, openai_api_key=settings.OPENAI_KEY, temperature=0.7)
    # Define the system prompt
    system_template = """ you are going to make answer only using this context not use any other information

   context : {context}

    Input: {input}

    """
    response = llm.invoke(system_template.format(context=context, input=prompt))

    return response.content



@tool("SOCIAL-SANCTUARY-questions", )
def sactury(prompt: str) -> str:
    """this function is used when user wants to know about SOCIAL SANCTUARY feature.THE SOCIAL SANCTUARY Anonymous community forum for support and sharing.

    Args:

        prompt (string): user query



    Returns:

        string: answer of the query

    """
    context = "BMOXI app is designed for teenage girls where they can listen some musics explore some contents had 1:1 mentoring sessions with all above features for helping them in their hard times. THE SOCIAL SANCTUARY Anonymous community forum for support and sharing."
    llm = ChatOpenAI(model=settings.OPENAI_MODEL, openai_api_key=settings.OPENAI_KEY, temperature=0.7)
    # Define the system prompt
    system_template = """ you are going to make answer only using this context not use any other information

   context : {context}

    Input: {input}

    """
    response = llm.invoke(system_template.format(context=context, input=prompt))

    return response.content


@tool("POWER-ZENS-questions", )
def power_zens(prompt: str) -> str:
    """this function is used when user wants to know about POWER ZENS feature. POWER ZENS Mini meditations for emotional control.



    Args:

        prompt (string): user query



    Returns:

        string: answer of the query

    """
    context = "BMOXI app is designed for teenage girls where they can listen some musics explore some contents had 1:1 mentoring sessions with all above features for helping them in their hard times. POWER ZENS Mini meditations for emotional control."
    llm = ChatOpenAI(model=settings.OPENAI_MODEL, openai_api_key=settings.OPENAI_KEY, temperature=0.7)
    # Define the system prompt
    system_template = """ you are going to make answer only using this context not use any other information

   context : {context}

    Input: {input}

    """
    response = llm.invoke(system_template.format(context=context, input=prompt))

    return response.content



@tool("MY-CALENDAR-questions", )
def my_calender(prompt: str) -> str:
    """this function is used when user wants to know about MY CALENDAR feature.MY CALENDAR: Visual calendar for tracking self-care rituals and moods.

    Args:

        prompt (string): user query



    Returns:

        string: answer of the query

    """
    context = "BMOXI app is designed for teenage girls where they can listen some musics explore some contents had 1:1 mentoring sessions with all above features for helping them in their hard times. MY CALENDAR: Visual calendar for tracking self-care rituals and moods."
    llm = ChatOpenAI(model=settings.OPENAI_MODEL, openai_api_key=settings.OPENAI_KEY, temperature=0.7)
    # Define the system prompt
    system_template = """ you are going to make answer only using this context not use any other information

   context : {context}

    Input: {input}

    """
    response = llm.invoke(system_template.format(context=context, input=prompt))

    return response.content




@tool("PUSH-AFFIRMATIONS-questions", )
def affirmations(prompt: str) -> str:
    """this function is used when user wants to know about PUSH AFFIRMATIONS feature.PUSH AFFIRMATIONS: Daily text affirmations for positive thinking.

    Args:

        prompt (string): user query



    Returns:

        string: answer of the query

    """
    context = "BMOXI app is designed for teenage girls where they can listen some musics explore some contents had 1:1 mentoring sessions with all above features for helping them in their hard times. PUSH AFFIRMATIONS: Daily text affirmations for positive thinking."
    llm = ChatOpenAI(model=settings.OPENAI_MODEL, openai_api_key=settings.OPENAI_KEY, temperature=0.7)
    # Define the system prompt
    system_template = """ you are going to make answer only using this context not use any other information

   context : {context}

    Input: {input}

    """
    response = llm.invoke(system_template.format(context=context, input=prompt))

    return response.content

@tool("HOROSCOPE-questions", )
def horoscope(prompt: str) -> str:
    """this function is used when user wants to know about HOROSCOPE feature.SELF-LOVE HOROSCOPE: Weekly personalized horoscope readings.

    Args:

        prompt (string): user query



    Returns:

        string: answer of the query

    """
    context = "BMOXI app is designed for teenage girls where they can listen some musics explore some contents had 1:1 mentoring sessions with all above features for helping them in their hard times. SELF-LOVE HOROSCOPE: Weekly personalized horoscope readings."
    llm = ChatOpenAI(model=settings.OPENAI_MODEL, openai_api_key=settings.OPENAI_KEY, temperature=0.7)
    # Define the system prompt
    system_template = """ you are going to make answer only using this context not use any other information

   context : {context}

    Input: {input}

    """
    response = llm.invoke(system_template.format(context=context, input=prompt))

    return response.content



@tool("INFLUENCER-POSTS-questions", )
def influencer_post(prompt: str) -> str:
    """this function is used when user wants to know about INFLUENCER POSTS feature.INFLUENCER POSTS: Exclusive access to social media influencer advice (coming soon).

    Args:

        prompt (string): user query



    Returns:

        string: answer of the query

    """
    context = "BMOXI app is designed for teenage girls where they can listen some musics explore some contents had 1:1 mentoring sessions with all above features for helping them in their hard times. INFLUENCER POSTS: Exclusive access to social media influencer advice (coming soon)."
    llm = ChatOpenAI(model=settings.OPENAI_MODEL, openai_api_key=settings.OPENAI_KEY, temperature=0.7)
    # Define the system prompt
    system_template = """ you are going to make answer only using this context not use any other information

   context : {context}

    Input: {input}

    """
    response = llm.invoke(system_template.format(context=context, input=prompt))

    return response.content


@tool("MY-VIBECHECK-questions", )
def my_vibecheck(prompt: str) -> str:
    """this function is used when user wants to know about MY VIBECHECK feature. MY VIBECHECK: Monitor and understand emotional patterns.



    Args:

        prompt (string): user query



    Returns:

        string: answer of the query

    """
    context = "BMOXI app is designed for teenage girls where they can listen some musics explore some contents had 1:1 mentoring sessions with all above features for helping them in their hard times. MY VIBECHECK: Monitor and understand emotional patterns."
    llm = ChatOpenAI(model=settings.OPENAI_MODEL, openai_api_key=settings.OPENAI_KEY, temperature=0.7)
    # Define the system prompt
    system_template = """ you are going to make answer only using this context not use any other information

   context : {context}

    Input: {input}

    """
    response = llm.invoke(system_template.format(context=context, input=prompt))

    return response.content



@tool("MY-RITUALS-questions", )
def my_rituals(prompt: str) -> str:
    """this function is used when user wants to know about MY RITUALS feature.MY RITUALS: Create personalized self-care routines.

    Args:

        prompt (string): user query



    Returns:

        string: answer of the query

    """
    context = "BMOXI app is designed for teenage girls where they can listen some musics explore some contents had 1:1 mentoring sessions with all above features for helping them in their hard times. MY RITUALS: Create personalized self-care routines."
    llm = ChatOpenAI(model=settings.OPENAI_MODEL, openai_api_key=settings.OPENAI_KEY, temperature=0.7)
    # Define the system prompt
    system_template = """ you are going to make answer only using this context not use any other information

   context : {context}

    Input: {input}

    """
    response = llm.invoke(system_template.format(context=context, input=prompt))

    return response.content




@tool("MY-REWARDS-questions", )
def my_rewards(prompt: str) -> str:
    """this function is used when user wants to know about MY REWARDS feature.MY REWARDS: Earn points for self-care, redeemable for gift cards.

    Args:

        prompt (string): user query



    Returns:

        string: answer of the query

    """
    context = "BMOXI app is designed for teenage girls where they can listen some musics explore some contents had 1:1 mentoring sessions with all above features for helping them in their hard times. MY REWARDS: Earn points for self-care, redeemable for gift cards."
    llm = ChatOpenAI(model=settings.OPENAI_MODEL, openai_api_key=settings.OPENAI_KEY, temperature=0.7)
    # Define the system prompt
    system_template = """ you are going to make answer only using this context not use any other information

   context : {context}

    Input: {input}

    """
    response = llm.invoke(system_template.format(context=context, input=prompt))

    return response.content


@tool("mentoring-questions", )
def mentoring(prompt: str) -> str:
    """this function is used when user wants to know about 1-1 mentoring feature.  1:1 MENTORING: Personalized mentoring (coming soon).



    Args:

        prompt (string): user query



    Returns:

        string: answer of the query

    """
    context = "BMOXI app is designed for teenage girls where they can listen some musics explore some contents had 1:1 mentoring sessions with all above features for helping them in their hard times.  1:1 MENTORING: Personalized mentoring (coming soon)."
    llm = ChatOpenAI(model=settings.OPENAI_MODEL, openai_api_key=settings.OPENAI_KEY, temperature=0.7)
    # Define the system prompt
    system_template = """ you are going to make answer only using this context not use any other information

   context : {context}

    Input: {input}

    """
    response = llm.invoke(system_template.format(context=context, input=prompt))

    return response.content



@tool("MY-JOURNAL-questions", )
def my_journal(prompt: str) -> str:
    """this function is used when user wants to know about MY JOURNAL feature.MY JOURNAL: Guided journaling exercises for self-reflection.

    Args:

        prompt (string): user query



    Returns:

        string: answer of the query

    """
    context = "BMOXI app is designed for teenage girls where they can listen some musics explore some contents had 1:1 mentoring sessions with all above features for helping them in their hard times. MY JOURNAL: Guided journaling exercises for self-reflection."
    llm = ChatOpenAI(model=settings.OPENAI_MODEL, openai_api_key=settings.OPENAI_KEY, temperature=0.7)
    # Define the system prompt
    system_template = """ you are going to make answer only using this context not use any other information

   context : {context}

    Input: {input}

    """
    response = llm.invoke(system_template.format(context=context, input=prompt))

    return response.content

@tool("podcast-recommendation-tool")
def recommand_podcast(prompt: str) -> str:
    """ this function must used when user wants to any resources only.

    Args:

        prompt (string): user query



    Returns:

        string: answer of the query

    """
    df = reg(prompt)
    context = """"""
    for index, row in df.iterrows():
        'title', 'cover_image', 'referral_link', 'category_id'
        context+= f"Row {index + 1}: Title: {row['title']} image: {row['cover_image']} referral_link: {row['referral_link']} category_id: {row['category_id']}"
    llm = ChatOpenAI(model=settings.OPENAI_MODEL, openai_api_key=settings.OPENAI_KEY, temperature=0.7)
    # Define the system prompt
    system_template = """ you have to give the recommandation of podcast for: {input}. also you are giving referal link of podcast.

    you must use the context only not any other information.

    context : {context}

    """
    # print(system_template.format(context=context, input=prompt))
    response = llm.invoke(system_template.format(context=context, input=prompt))

    return response.content

@tool("set-chat-bot-name",return_direct=True )
def set_chatbot_name(name: str) -> str:
    """ this function is used when your best friend want to give you new name.

    Args:

        name (string): new name of you.



    Returns:

        string: response after setting new name.

    """

    return "Okay, from now my name will be "+ name 

@tool("clossing-chat",return_direct=True)
def close_chat(summary:str)-> str:
    """ when you feel it's time to finish the conversation use this tool.

        must use this tool when user closing the conversation. must use this tool when you are ending the conversation.



    Args:

        summary (str): summary of whole chat with your friend.



    Returns:

        str: closing chat statements.

    """
    
    print('close tool starts')
    system_template = """ you have given one summary of chat. 

    summary : {summary}.

    using this summary give recommandation of podcast or suggest any features from given tools and make response. also you are going to close the conversation with your friend.

    if user already received suggestions, you must not give again. and just end the conversation inshort wihtout mentioning anything. 

    # make all responses short and don't remove any podcast links.

    """
           
    tools = [moxicast, my_calender, my_journal, my_rewards, my_rituals, my_vibecheck, peptalks, sactury, power_zens, affirmations, horoscope, mentoring, influencer_post, recommand_podcast]
    functions = [convert_to_openai_function(f) for f in tools]
    llm = ChatOpenAI(model=settings.OPENAI_MODEL, openai_api_key=settings.OPENAI_KEY, temperature=0.7).bind(functions=functions)
    print('llm is created')
    
    prompt = ChatPromptTemplate.from_messages([("system", system_template.format(summary = summary)),MessagesPlaceholder(variable_name="agent_scratchpad")])
    chain = RunnablePassthrough.assign(agent_scratchpad=lambda x: format_to_openai_functions(x["intermediate_steps"])) | prompt |llm | OpenAIFunctionsAgentOutputParser()
    print('chain is rolling')
    agent = AgentExecutor(agent=chain, tools=tools, memory=MEMORY, verbose=True)
    # Define the system prompt
                      
    print('agent is created')
    # print(system_template.format(context=context, input=prompt))\

    response = agent.invoke({})['output']
    return response


@tool("App-Fetures")
def app_features(summary:str)-> str:
    """ For any app features details only use this tool.



    Args:

        summary (str): summary of whole chat with your friend.



    Returns:

        str: closing chat statements.

    """
    
    print('app feature tool starts')
    system_template = """ you have given one summary of chat. 

    summary : {summary}.

    if summary doesn't specify any feature name ask question don't invoke any tool.

    using this summary give appropriate features suggestions using tools.

    # make all responses short.

    """
           
    tools = [moxicast, my_calender, my_journal, my_rewards, my_rituals, my_vibecheck, peptalks, sactury, power_zens, affirmations, horoscope, mentoring, influencer_post]
    functions = [convert_to_openai_function(f) for f in tools]
    llm = ChatOpenAI(model=settings.OPENAI_MODEL, openai_api_key=settings.OPENAI_KEY, temperature=0.7).bind(functions=functions)
    print('llm is created')
    
    prompt = ChatPromptTemplate.from_messages([("system", system_template.format(summary = summary)),MessagesPlaceholder(variable_name="agent_scratchpad")])
    chain = RunnablePassthrough.assign(agent_scratchpad=lambda x: format_to_openai_functions(x["intermediate_steps"])) | prompt |llm | OpenAIFunctionsAgentOutputParser()
    print('chain is rolling')
    agent = AgentExecutor(agent=chain, tools=tools, memory=MEMORY, verbose=True)
    # Define the system prompt
                      
    print('agent is created')
    # print(system_template.format(context=context, input=prompt))\

    response = agent.invoke({})['output']
    return response

# close_chat('Suggest a podcast or self-care tool for someone looking to unwind after a hectic day at work.')



@tool("Joke-teller", )
def joke_teller(summary: str) -> str:
    """If user needs mood boost and when you feel to lighten the environment use this tool to tell the jokes.

     Args:

        summary (str): summary of whole chat with your friend.



    Returns:

        string: answer of the query

    """
    context = "BMOXI app is designed for teenage girls where they can listen some musics explore some contents had 1:1 mentoring sessions with all above features for helping them in their hard times. MY REWARDS: Earn points for self-care, redeemable for gift cards."
    llm = ChatOpenAI(model=settings.OPENAI_MODEL, openai_api_key=settings.OPENAI_KEY, temperature=0.7)
    # Define the system prompt
    system_template = """  summary : {summary}.

    you are given summary of current chat. make one joke for your friend. to boost her mood.

    # make all responses short.

    """
    response = llm.invoke(system_template.format(summary=summary))

    return response.content