Spaces:
Sleeping
Sleeping
File size: 10,962 Bytes
0fc768b 3c74d99 10cff5d 3c74d99 780c827 c6219ec 55020f5 8f7fdc3 3c74d99 910154a 55020f5 910154a def4b9d 910154a def4b9d 910154a 55020f5 910154a def4b9d 55020f5 910154a 55020f5 910154a 55020f5 910154a 55020f5 910154a 55020f5 def4b9d 55020f5 910154a 55020f5 910154a f2019db 910154a 55020f5 910154a def4b9d 55020f5 910154a def4b9d 910154a 10cff5d 47f3b7c 910154a 55020f5 910154a def4b9d 910154a def4b9d 910154a def4b9d 910154a 55020f5 910154a def4b9d 910154a def4b9d 910154a 10cff5d 910154a 55020f5 910154a 55020f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import os
import json
import gradio as gr
from datetime import datetime
from dotenv import load_dotenv
from openai import OpenAI
from prompts import SYSTEM_PROMPT, format_exploration_prompt
# Load environment variables
load_dotenv()
class ExplorationPathGenerator:
def __init__(self, api_key: str):
self.client = OpenAI(
api_key=api_key,
base_url="https://api.groq.com/openai/v1"
)
def generate_exploration_path(self, query: str, selected_path=None, exploration_parameters=None):
try:
if selected_path is None:
selected_path = []
if exploration_parameters is None:
exploration_parameters = {}
# Use the prompt from prompt.py
formatted_prompt = format_exploration_prompt(
user_query=query,
selected_path=selected_path,
exploration_parameters=exploration_parameters
)
response = self.client.chat.completions.create(
model="mixtral-8x7b-32768",
messages=[
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": formatted_prompt}
],
temperature=0.7,
max_tokens=4000
)
result = json.loads(response.choices[0].message.content)
# Convert exploration response to graph format
nodes = []
node_id_counter = 0
# Add meta insights as central node
node_id_counter += 1
meta_node = {
"id": f"meta_{node_id_counter}",
"title": "Exploration Summary",
"description": result["exploration_summary"]["current_context"],
"depth": 0,
"connections": []
}
nodes.append(meta_node)
# Create nodes from standard axes
for axis in result["knowledge_axes"]["standard_axes"]:
node_id_counter += 1
axis_node = {
"id": f"std_{node_id_counter}",
"title": axis["name"],
"description": f"Current values: {', '.join(axis['current_values'])}",
"depth": 1,
"connections": []
}
# Connect to meta node
meta_node["connections"].append({
"target_id": axis_node["id"],
"relevance_score": 0.8
})
# Add potential values as nodes
for value in axis["potential_values"]:
node_id_counter += 1
value_node = {
"id": f"val_{node_id_counter}",
"title": value["value"],
"description": value["contextual_rationale"],
"depth": 2,
"connections": []
}
nodes.append(value_node)
axis_node["connections"].append({
"target_id": value_node["id"],
"relevance_score": value["relevance_score"] / 100
})
nodes.append(axis_node)
# Create nodes from emergent axes
for axis in result["knowledge_axes"]["emergent_axes"]:
node_id_counter += 1
emergent_node = {
"id": f"emg_{node_id_counter}",
"title": f"{axis['name']} (Emergent)",
"description": f"Parent axis: {axis['parent_axis']}",
"depth": 2,
"connections": []
}
# Connect to meta node
meta_node["connections"].append({
"target_id": emergent_node["id"],
"relevance_score": 0.6
})
# Add innovative values
for value in axis["innovative_values"]:
node_id_counter += 1
value_node = {
"id": f"inv_{node_id_counter}",
"title": value["value"],
"description": value["discovery_potential"],
"depth": 3,
"connections": []
}
nodes.append(value_node)
emergent_node["connections"].append({
"target_id": value_node["id"],
"relevance_score": value["innovation_score"] / 100
})
nodes.append(emergent_node)
return {"nodes": nodes}
except Exception as e:
print(f"Error generating exploration path: {e}")
return {"error": str(e)}
def create_visualization_html(self, nodes):
"""Create a simple HTML visualization"""
html_content = "<div style='padding: 20px; font-family: Arial, sans-serif;'>"
# Create a style for the nodes
html_content += """
<style>
.node-card {
border: 1px solid #ddd;
border-radius: 8px;
padding: 15px;
margin: 10px 0;
background-color: #f9f9f9;
}
.node-title {
font-weight: bold;
color: #2c3e50;
margin-bottom: 8px;
}
.node-description {
color: #34495e;
margin-bottom: 8px;
}
.node-connections {
font-size: 0.9em;
color: #7f8c8d;
}
.depth-indicator {
display: inline-block;
padding: 3px 8px;
border-radius: 12px;
font-size: 0.8em;
margin-bottom: 5px;
}
</style>
"""
# Create nodes visualization
for node in nodes:
depth_color = ['#FF9999', '#99FF99', '#9999FF'][node['depth'] % 3]
html_content += f"""
<div class='node-card'>
<div class='depth-indicator' style='background-color: {depth_color}'>
Depth: {node['depth']}
</div>
<div class='node-title'>{node['title']}</div>
<div class='node-description'>{node['description']}</div>
<div class='node-connections'>
"""
# Add connections
if node.get('connections'):
html_content += "<strong>Connections:</strong><ul>"
for conn in node['connections']:
html_content += f"<li>Connected to: {conn['target_id']}"
if 'relevance_score' in conn:
html_content += f" (Relevance: {conn['relevance_score']:.2f})"
html_content += "</li>"
html_content += "</ul>"
html_content += "</div></div>"
html_content += "</div>"
return html_content
def explore(query: str, path_history: str = "[]", parameters: str = "{}", depth: int = 5, domain: str = "") -> tuple:
"""Generate exploration path and visualization"""
try:
# Initialize generator
api_key = os.getenv("GROQ_API_KEY")
if not api_key:
raise ValueError("GROQ_API_KEY not found in environment variables")
generator = ExplorationPathGenerator(api_key=api_key)
# Parse inputs
try:
selected_path = json.loads(path_history)
exploration_parameters = json.loads(parameters)
except json.JSONDecodeError as e:
raise ValueError(f"Invalid JSON input: {str(e)}")
# Add parameters
exploration_parameters.update({
"domain": domain,
"depth": depth
})
# Generate result
result = generator.generate_exploration_path(
query=query,
selected_path=selected_path,
exploration_parameters=exploration_parameters
)
# Create visualization
graph_html = generator.create_visualization_html(result.get('nodes', []))
summary = f"Exploration path generated with {len(result.get('nodes', []))} nodes"
return json.dumps(result), graph_html, summary
except Exception as e:
error_response = {
"error": str(e),
"status": "failed",
"timestamp": datetime.now().isoformat(),
"query": query
}
return json.dumps(error_response), "<div>Error generating visualization</div>", f"Error: {str(e)}"
def create_interface() -> gr.Blocks:
"""Create and configure the Gradio interface"""
with gr.Blocks(
title="Art History Exploration Path Generator",
theme=gr.themes.Soft()
) as interface:
gr.Markdown("""
# Knowledge Exploration Path Generator
Generate interactive exploration paths through complex topics.
""")
with gr.Row():
with gr.Column(scale=1):
query_input = gr.Textbox(
label="Exploration Query",
placeholder="Enter your exploration query...",
lines=2
)
depth = gr.Slider(
label="Exploration Depth",
minimum=1,
maximum=10,
value=5,
step=1
)
domain = gr.Textbox(
label="Domain Context",
placeholder="Optional: Specify domain context",
lines=1
)
generate_btn = gr.Button("Generate Exploration Path", variant="primary")
with gr.Column(scale=2):
text_output = gr.JSON(label="Raw Result")
graph_output = gr.HTML(label="Visualization")
summary_output = gr.Textbox(label="Summary", lines=2)
generate_btn.click(
fn=explore,
inputs=[
query_input,
gr.Textbox(value="[]", visible=False),
gr.Textbox(value="{}", visible=False),
depth,
domain
],
outputs=[text_output, graph_output, summary_output]
)
return interface
if __name__ == "__main__":
try:
print(f"===== Application Startup at {datetime.now().strftime('%Y-%m-%d %H:%M:%S')} =====")
demo = create_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True
)
except Exception as e:
print(f"Failed to launch interface: {e}")
|