Spaces:
Sleeping
Sleeping
File size: 7,140 Bytes
423736f 42dcd62 ac4281b 42dcd62 ac4281b 42dcd62 802b427 e87b10f 802b427 e254022 802b427 e254022 802b427 e254022 802b427 e254022 802b427 e254022 802b427 e254022 802b427 e254022 802b427 e254022 802b427 e254022 802b427 e254022 802b427 6a342f0 802b427 6a342f0 802b427 e254022 8b9d1e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import json
SYSTEM_PROMPT = """You are a sophisticated AI assistant specializing in generating comprehensive exploration paths.
Your task is to analyze the given query and generate a structured exploration response.
Your response should include:
1. A detailed exploration summary with context and complexity level
2. Knowledge axes with both standard and emergent dimensions
3. Navigation strategies for both zooming in and out
4. Meta-level insights about the exploration
Ensure all numerical values are within their specified ranges and all required fields are included.
Format your response as a structured object following the ExplorationResponse schema."""
CONTEXTUAL_ZOOM_PROMPT = """# CONTEXTUAL EXPLORATION PATH GENERATOR
## CORE PURPOSE
Create a dynamic, intelligent system for transforming user queries into structured, multi-dimensional exploration paths by:
- Breaking down complex queries into meaningful axes
- Generating contextually relevant values
- Providing strategic navigation through exploration dimensions
## SYSTEM OBJECTIVE
Transform unstructured user inquiries into a comprehensive, navigable knowledge exploration framework that:
- Deconstructs complex topics into manageable exploration dimensions
- Generates intelligent, contextually-linked axes and values
- Enables flexible navigation through knowledge spaces
- Supports iterative learning and discovery
## INPUT REQUIREMENTS
Input is a JSON object containing:
{
"user_query": "Primary exploration intent or research question",
"selected_path": [
{"axis": "string", "value": "string"} // Current exploration context
],
"exploration_parameters": {
"depth": 0-10, // Exploration granularity
"domain": "optional domain-specific context",
"previous_explorations": [] // Historical exploration context
}
}
## CURRENT INPUT:
{
"user_query": "{{user_query}}",
"selected_path": {{selected_path}},
"exploration_parameters": {{exploration_parameters}}
}
### Input Components Explained:
1. `user_query`: The fundamental question or exploration intent
- Can be broad or specific
- Represents the initial knowledge seeking goal
- Provides context for axis and value generation
2. `selected_path`: Current exploration context
- Represents user's existing exploration trajectory
- Each tuple defines an axis-value pair
- Guides contextual relevance of future suggestions
3. `exploration_parameters`:
- `depth`: Controls exploration granularity
- `domain`: Provides additional contextual constraints
- `previous_explorations`: Tracks exploration history
## OUTPUT BLUEPRINT
{
"exploration_summary": {
"current_context": "Narrative summary of exploration state",
"complexity_level": 0-10
},
"knowledge_axes": {
"standard_axes": [
{
"name": "string",
"current_values": [""],
"potential_values": [
{
"value": "string",
"relevance_score": 0-100,
"contextual_rationale": "Why this value matters"
}
],
"axis_constraints": ["Logical limitations"]
}
],
"emergent_axes": [
{
"name": "string",
"parent_axis": "string",
"innovative_values": [
{
"value": "string",
"innovation_score": 0-100,
"discovery_potential": "Unique exploration opportunity"
}
]
}
]
},
"navigation_strategies": {
"zoom_trajectories": [
{
"target_axis": "string",
"zoom_value": "string",
"unlocked_dimensions": [""],
"depth_increment": 1-3
}
],
"dezoom_pathways": [
{
"removal_tuple": {"axis": "string", "value": "string"},
"contextual_expansion": "Broader exploration narrative",
"new_possibility_vectors": [""]
}
]
},
"meta_insights": {
"exploration_efficiency": 0-100,
"knowledge_gap_indicators": [""],
"recommended_next_steps": [""]
}
}
## PROCESSING GUIDELINES
1. Prioritize high-relevance, low-redundancy axes
2. Maintain semantic coherence across generated dimensions
3. Ensure logical progression in exploration paths
4. Dynamically adjust complexity based on exploration depth
## COGNITIVE MAPPING PRINCIPLES
- Connect axes through semantic and contextual relationships
- Generate values that expand conceptual understanding
- Provide actionable, insight-driven navigation suggestions
- Respect domain-specific knowledge constraints
## ADVANCED CONSTRAINTS
- Avoid circular or repetitive exploration paths
- Maintain logical consistency with initial query
- Provide clear rationale for axis and value selections
- Support iterative, progressive knowledge discovery
## OUTPUT INTERPRETATION GUIDE
- `exploration_summary`: Overall context and complexity
- `knowledge_axes`:
- `standard_axes`: Traditional exploration dimensions
- `emergent_axes`: Innovative, context-derived dimensions
- `navigation_strategies`:
- `zoom_trajectories`: Depth-increasing exploration paths
- `dezoom_pathways`: Breadth-expanding exploration options
- `meta_insights`: Performance and discovery potential metrics
## RESPONSE FORMAT
Response must be a valid JSON object matching the ExplorationResponse model with:
- exploration_summary: Contains current_context and complexity_level (0-10)
- knowledge_axes: Contains standard_axes and emergent_axes
- navigation_strategies: Contains zoom_trajectories and dezoom_pathways
- meta_insights: Contains efficiency score, gaps, and next steps
"""
DEFAULT_RESPONSE = {
"exploration_summary": {
"current_context": "Initial exploration state",
"complexity_level": 1
},
"knowledge_axes": {
"standard_axes": [
{
"name": "temporal",
"current_values": ["present"],
"potential_values": [
{
"value": "past",
"relevance_score": 80,
"contextual_rationale": "Historical context"
}
],
"axis_constraints": ["chronological order"]
}
],
"emergent_axes": []
},
"navigation_strategies": {
"zoom_trajectories": [
{
"target_axis": "temporal",
"zoom_value": "present",
"unlocked_dimensions": ["basic"],
"depth_increment": 1
}
],
"dezoom_pathways": [
{
"removal_tuple": {"axis": "temporal", "value": "present"},
"contextual_expansion": "Initial state",
"new_possibility_vectors": ["begin"]
}
]
},
"meta_insights": {
"exploration_efficiency": 50,
"knowledge_gap_indicators": ["initial state"],
"recommended_next_steps": ["begin exploration"]
}
}
def format_exploration_prompt(user_query: str, selected_path: list, exploration_parameters: dict) -> str:
"""Helper function to format the prompt with proper JSON structure"""
# Create a template with the values already JSON-serialized
formatted_prompt = CONTEXTUAL_ZOOM_PROMPT.replace("{{user_query}}", json.dumps(user_query))
formatted_prompt = formatted_prompt.replace("{{selected_path}}", json.dumps(selected_path))
formatted_prompt = formatted_prompt.replace("{{exploration_parameters}}", json.dumps(exploration_parameters))
return formatted_prompt |