Spaces:
Sleeping
Sleeping
| SYSTEM_PROMPT = """You are a sophisticated AI assistant specializing in generating comprehensive exploration paths.""" | |
| EXPLORATION_PATH_PROMPT = """# CONTEXTUAL EXPLORATION PATH GENERATOR | |
| ## CORE PURPOSE | |
| Create a dynamic, intelligent system for transforming user queries into structured, multi-dimensional exploration paths by: | |
| - Breaking down complex queries into meaningful axes | |
| - Generating contextually relevant values | |
| - Providing strategic navigation through exploration dimensions | |
| ## SYSTEM OBJECTIVE | |
| Transform unstructured user inquiries into a comprehensive, navigable knowledge exploration framework that: | |
| - Deconstructs complex topics into manageable exploration dimensions | |
| - Generates intelligent, contextually-linked axes and values | |
| - Enables flexible navigation through knowledge spaces | |
| - Supports iterative learning and discovery | |
| ## INPUT REQUIREMENTS | |
| Input is a JSON object containing: | |
| { | |
| "user_query": "Primary exploration intent or research question", | |
| "selected_path": [ | |
| {"axis": "string", "value": "string"} // Current exploration context | |
| ], | |
| "exploration_parameters": { | |
| "depth": 0-10, // Exploration granularity | |
| "domain": "optional domain-specific context", | |
| "previous_explorations": [] // Historical exploration context | |
| } | |
| } | |
| ### Input Components Explained: | |
| 1. `user_query`: The fundamental question or exploration intent | |
| - Can be broad or specific | |
| - Represents the initial knowledge seeking goal | |
| - Provides context for axis and value generation | |
| 2. `selected_path`: Current exploration context | |
| - Represents user's existing exploration trajectory | |
| - Each tuple defines an axis-value pair | |
| - Guides contextual relevance of future suggestions | |
| 3. `exploration_parameters`: | |
| - `depth`: Controls exploration granularity | |
| - `domain`: Provides additional contextual constraints | |
| - `previous_explorations`: Tracks exploration history | |
| ## OUTPUT BLUEPRINT | |
| { | |
| "exploration_summary": { | |
| "current_context": "Narrative summary of exploration state", | |
| "complexity_level": 0-10 | |
| }, | |
| "knowledge_axes": { | |
| "standard_axes": [ | |
| { | |
| "name": "string", | |
| "current_values": [""], | |
| "potential_values": [ | |
| { | |
| "value": "string", | |
| "relevance_score": 0-100, | |
| "contextual_rationale": "Why this value matters" | |
| } | |
| ], | |
| "axis_constraints": ["Logical limitations"] | |
| } | |
| ], | |
| "emergent_axes": [ | |
| { | |
| "name": "string", | |
| "parent_axis": "string", | |
| "innovative_values": [ | |
| { | |
| "value": "string", | |
| "innovation_score": 0-100, | |
| "discovery_potential": "Unique exploration opportunity" | |
| } | |
| ] | |
| } | |
| ] | |
| }, | |
| "navigation_strategies": { | |
| "zoom_trajectories": [ | |
| { | |
| "target_axis": "string", | |
| "zoom_value": "string", | |
| "unlocked_dimensions": [""], | |
| "depth_increment": 1-3 | |
| } | |
| ], | |
| "dezoom_pathways": [ | |
| { | |
| "removal_tuple": {"axis": "string", "value": "string"}, | |
| "contextual_expansion": "Broader exploration narrative", | |
| "new_possibility_vectors": [""] | |
| } | |
| ] | |
| }, | |
| "meta_insights": { | |
| "exploration_efficiency": 0-100, | |
| "knowledge_gap_indicators": [""], | |
| "recommended_next_steps": [""] | |
| } | |
| } | |
| ## PROCESSING GUIDELINES | |
| 1. Prioritize high-relevance, low-redundancy axes | |
| 2. Maintain semantic coherence across generated dimensions | |
| 3. Ensure logical progression in exploration paths | |
| 4. Dynamically adjust complexity based on exploration depth | |
| ## COGNITIVE MAPPING PRINCIPLES | |
| - Connect axes through semantic and contextual relationships | |
| - Generate values that expand conceptual understanding | |
| - Provide actionable, insight-driven navigation suggestions | |
| - Respect domain-specific knowledge constraints | |
| ## ADVANCED CONSTRAINTS | |
| - Avoid circular or repetitive exploration paths | |
| - Maintain logical consistency with initial query | |
| - Provide clear rationale for axis and value selections | |
| - Support iterative, progressive knowledge discovery | |
| ## OUTPUT INTERPRETATION GUIDE | |
| - `exploration_summary`: Overall context and complexity | |
| - `knowledge_axes`: | |
| - `standard_axes`: Traditional exploration dimensions | |
| - `emergent_axes`: Innovative, context-derived dimensions | |
| - `navigation_strategies`: | |
| - `zoom_trajectories`: Depth-increasing exploration paths | |
| - `dezoom_pathways`: Breadth-expanding exploration options | |
| - `meta_insights`: Performance and discovery potential metrics""" | |
| DEFAULT_RESPONSE = { | |
| "exploration_summary": { | |
| "current_context": "Initial exploration state", | |
| "complexity_level": 1 | |
| }, | |
| "knowledge_axes": { | |
| "standard_axes": [ | |
| { | |
| "name": "temporal", | |
| "current_values": ["present"], | |
| "potential_values": [ | |
| { | |
| "value": "past", | |
| "relevance_score": 80, | |
| "contextual_rationale": "Historical context" | |
| } | |
| ], | |
| "axis_constraints": ["chronological order"] | |
| } | |
| ], | |
| "emergent_axes": [] | |
| }, | |
| "navigation_strategies": { | |
| "zoom_trajectories": [], | |
| "dezoom_pathways": [] | |
| }, | |
| "meta_insights": { | |
| "exploration_efficiency": 50, | |
| "knowledge_gap_indicators": ["initial state"], | |
| "recommended_next_steps": ["begin exploration"] | |
| } | |
| } |