File size: 11,400 Bytes
52ba610
0b2d855
52ba610
 
 
 
 
 
98dac50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52ba610
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
# Import required environment settings before any other imports
import os
import sys

# Set environment variable to prevent PyTorch custom class loading issues
os.environ["PYTORCH_DISABLE_CUSTOM_CLASS_LOADING"] = "1"

# Now import streamlit and other dependencies
import streamlit as st
from chroma_operations.ingestion import ingest
from rag import ask_question
from chroma_operations.delete_chroma import remove_from_chroma
import json

# Get list of processed PDF file names without `.pdf`
def get_processed_file_names(folder_path="docs/processed"):
    try:
        files = os.listdir(folder_path)
        pdfs = [f[:-4] for f in files if f.endswith(".pdf")]
        return sorted(pdfs)
    except Exception as e:
        st.error(f"Error reading folder: {e}")
        return []


st.set_page_config(page_title="RAG Demo", layout="centered")
st.title("πŸ“„ Retrieval-Augmented Generation (RAG) Demo")

# Create tabs for different functionalities
tab1, tab2, tab3 = st.tabs(["Ask Questions", "Upload Documents", "Manage Files"])

with tab1:
    st.markdown("Ask a question based on a specific processed document.")

    # Add a refresh button
    if st.button("πŸ”„ Refresh Document List"):
        st.success("Document list refreshed!")
        # No need to do anything else - Streamlit will rerun and refresh the list

    # Fetch available document names
    doc_names = get_processed_file_names()
    if not doc_names:
        st.warning("No documents available. Please upload and process documents first.")
    else:
        # Add "All Documents" checkbox
        use_all_docs = st.checkbox("πŸ“š Use All Documents", value=False)

        # Multi-select for documents (disabled if "All Documents" is checked)
        if use_all_docs:
            selected_files = doc_names
            st.info(f"Using all {len(doc_names)} available documents")
        else:
            selected_files = st.multiselect(
                "πŸ“ Select Documents",
                options=doc_names,
                default=[doc_names[0]] if doc_names else None,
                help="Select one or more documents to search through",
            )

            if not selected_files:
                st.warning("Please select at least one document.")
   

    # User question
    query_text = st.text_area(
        "🧠 Your Question",
        placeholder="e.g. What are the treatment steps for diabetes?",
    )

    if st.button("Ask"):
        if not query_text or not selected_files:
            st.warning("Please fill in both the question and select a document.")
        else:
            with st.spinner("Processing..."):
                try:
                    response = ask_question(query_text, selected_files)

                    if response:
                        st.success("βœ… Answer:")
                        st.markdown(f"{response['answer']}")

                        with st.expander("πŸ“š Retrieved Chunks"):
                            for i, chunk in enumerate(response["chunks"]):
                                st.markdown(f"**Chunk {i+1}:** {chunk}")
                    else:
                        st.error(f"Error in the answer")

                except Exception as e:
                    st.error(f"Failed to connect to the backend: {e}")

with tab2:
    st.markdown("Upload new documents to be processed for the RAG system.")

    # Ensure directories exist
    os.makedirs("docs/unprocessed", exist_ok=True)
    os.makedirs("docs/processed", exist_ok=True)

    # File uploader
    uploaded_file = st.file_uploader("Upload PDF Document", type=["pdf"])

    if uploaded_file is not None:
        st.info(f"File '{uploaded_file.name}' ready for upload")

    # Create columns for buttons
    col1, col2 = st.columns(2)

    # Upload button
    if col1.button("Upload to System"):
        try:
            # Save the uploaded file to the docs/unprocessed directory
            with open(os.path.join("docs/unprocessed", uploaded_file.name), "wb") as f:
                f.write(uploaded_file.getbuffer())
            st.success(f"File '{uploaded_file.name}' saved to docs/unprocessed/")
        except Exception as e:
            st.error(f"Error saving file: {e}")

    # Ingest button
    if col2.button("Process Document"):
        try:
            with st.spinner("Processing document... This may take a while."):
                # Call the ingestion script
                result = ingest()

                if result:
                    st.success("Document processed successfully!")
                    # Refresh the list of available documents
                    doc_names = get_processed_file_names()
                else:
                    st.error(f"Error processing document")
        except Exception as e:
            st.error(f"Error running ingestion process: {e}")

    # Display list of files in unprocessed folder
    st.subheader("Unprocessed Documents")
    try:
        unprocessed_files = os.listdir("docs/unprocessed")
        if unprocessed_files:
            for file in unprocessed_files:
                st.text(f"β€’ {file}")
        else:
            st.info("No unprocessed documents.")
    except Exception as e:
        st.error(f"Error reading unprocessed folder: {e}")

    # Display list of processed files
    st.subheader("Processed Documents")
    try:
        processed_files = os.listdir("docs/processed")
        processed_files = [f for f in processed_files if f.endswith(".pdf")]
        if processed_files:
            for file in processed_files:
                st.text(f"β€’ {file}")
        else:
            st.info("No processed documents.")
    except Exception as e:
        st.error(f"Error reading processed folder: {e}")

with tab3:
    st.markdown(
        "Manage your documents by deleting files from processed or unprocessed folders."
    )

    col1, col2 = st.columns(2)

    with col1:
        st.subheader("Delete Unprocessed Documents")
        try:
            unprocessed_files = os.listdir("docs/unprocessed")
            if unprocessed_files:
                file_to_delete_unprocessed = st.selectbox(
                    "Select file to delete from unprocessed folder",
                    unprocessed_files,
                    key="unprocessed_select",
                )

                if st.button("Delete Unprocessed File", key="delete_unprocessed"):
                    try:
                        file_path = os.path.join(
                            "docs/unprocessed", file_to_delete_unprocessed
                        )
                        os.remove(file_path)
                        st.success(f"Successfully deleted {file_to_delete_unprocessed}")
                        # Force refresh the app to show the updated file list
                        st.rerun()
                    except Exception as e:
                        st.error(f"Error deleting file: {e}")
            else:
                st.info("No unprocessed documents to delete.")
        except Exception as e:
            st.error(f"Error accessing unprocessed folder: {e}")

    with col2:
        st.subheader("Delete Processed Documents")
        try:
            processed_files = [
                f for f in os.listdir("docs/processed") if f.endswith(".pdf")
            ]
            if processed_files:
                file_to_delete_processed = st.selectbox(
                    "Select file to delete from processed folder",
                    processed_files,
                    key="processed_select",
                )

                if st.button("Delete Processed File", key="delete_processed"):
                    try:
                        # Delete the PDF file
                        pdf_path = os.path.join(
                            "docs/processed", file_to_delete_processed
                        )
                        os.remove(pdf_path)

                        # Also delete the corresponding vector store if it exists
                        base_name = file_to_delete_processed[
                            :-4
                        ]  # Remove .pdf extension
                        vector_store_path = os.path.join(
                            "docs/processed", f"{base_name}.faiss"
                        )
                        if os.path.exists(vector_store_path):
                            os.remove(vector_store_path)

                        # Delete metadata file if it exists
                        metadata_path = os.path.join(
                            "docs/processed", f"{base_name}_metadata.json"
                        )
                        if os.path.exists(metadata_path):
                            os.remove(metadata_path)

                        # Remove document from Chroma DB
                        with st.spinner("Removing document from vector database..."):
                            remove_from_chroma(base_name)

                        st.success(
                            f"Successfully deleted {file_to_delete_processed} and related files"
                        )
                        # Force refresh the app to show the updated file list
                        st.rerun()
                    except Exception as e:
                        st.error(f"Error deleting file: {e}")
            else:
                st.info("No processed documents to delete.")
        except Exception as e:
            st.error(f"Error accessing processed folder: {e}")

    # Add a separator
    st.markdown("---")

    # Delete all files section
    st.subheader("Bulk Operations")
    col3, col4 = st.columns(2)

    with col3:
        if st.button(
            "Delete ALL Unprocessed Files", type="primary", use_container_width=True
        ):
            try:
                unprocessed_files = os.listdir("docs/unprocessed")
                if unprocessed_files:
                    for file in unprocessed_files:
                        os.remove(os.path.join("docs/unprocessed", file))
                    st.success(
                        f"Successfully deleted all {len(unprocessed_files)} unprocessed files"
                    )
                    # Force refresh
                    st.rerun()
                else:
                    st.info("No files to delete.")
            except Exception as e:
                st.error(f"Error during bulk deletion: {e}")

    with col4:
        if st.button(
            "Delete ALL Processed Files", type="primary", use_container_width=True
        ):
            try:
                processed_files = os.listdir("docs/processed")
                if processed_files:
                    for file in processed_files:
                        file_path = os.path.join("docs/processed", file)
                        os.remove(file_path)

                        # If it's a PDF file, also remove from Chroma
                        if file.endswith(".pdf"):
                            base_name = file[:-4]  # Remove .pdf extension
                            remove_from_chroma(base_name)

                    st.success(
                        f"Successfully deleted all {len(processed_files)} processed files"
                    )
                    # Force refresh
                    st.rerun()
                else:
                    st.info("No files to delete.")
            except Exception as e:
                st.error(f"Error during bulk deletion: {e}")