Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,7 @@ from transformers import pipeline
|
|
3 |
import numpy as np
|
4 |
import os
|
5 |
from huggingface_hub import login
|
|
|
6 |
import spaces
|
7 |
|
8 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
@@ -12,17 +13,24 @@ if HF_TOKEN:
|
|
12 |
MODEL_ID = "badrex/ASRwanda"
|
13 |
transcriber = pipeline("automatic-speech-recognition", model=MODEL_ID)
|
14 |
|
|
|
15 |
@spaces.GPU
|
16 |
def transcribe(audio):
|
17 |
sr, y = audio
|
|
|
18 |
# convert to mono if stereo
|
19 |
if y.ndim > 1:
|
20 |
y = y.mean(axis=1)
|
|
|
|
|
|
|
|
|
|
|
21 |
y = y.astype(np.float32)
|
22 |
y /= np.max(np.abs(y))
|
|
|
23 |
return transcriber({"sampling_rate": 16000, "raw": y})["text"]
|
24 |
|
25 |
-
|
26 |
examples = []
|
27 |
examples_dir = "examples"
|
28 |
if os.path.exists(examples_dir):
|
|
|
3 |
import numpy as np
|
4 |
import os
|
5 |
from huggingface_hub import login
|
6 |
+
import librosa
|
7 |
import spaces
|
8 |
|
9 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
|
|
13 |
MODEL_ID = "badrex/ASRwanda"
|
14 |
transcriber = pipeline("automatic-speech-recognition", model=MODEL_ID)
|
15 |
|
16 |
+
|
17 |
@spaces.GPU
|
18 |
def transcribe(audio):
|
19 |
sr, y = audio
|
20 |
+
|
21 |
# convert to mono if stereo
|
22 |
if y.ndim > 1:
|
23 |
y = y.mean(axis=1)
|
24 |
+
|
25 |
+
# resample to 16kHz if needed
|
26 |
+
if sr != 16000:
|
27 |
+
y = librosa.resample(y, orig_sr=sr, target_sr=16000)
|
28 |
+
|
29 |
y = y.astype(np.float32)
|
30 |
y /= np.max(np.abs(y))
|
31 |
+
|
32 |
return transcriber({"sampling_rate": 16000, "raw": y})["text"]
|
33 |
|
|
|
34 |
examples = []
|
35 |
examples_dir = "examples"
|
36 |
if os.path.exists(examples_dir):
|