bagaseptian commited on
Commit
15986d9
·
verified ·
1 Parent(s): 58bdd95

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +109 -0
app.py ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ import sys
3
+ import os
4
+ import json
5
+ from flask import Flask, request, jsonify
6
+ from llama_cpp import Llama
7
+ from huggingface_hub import hf_hub_download
8
+
9
+ # Inisialisasi Flask app
10
+ app = Flask(__name__)
11
+
12
+ # Konfigurasi Logging
13
+ logging.basicConfig(stream=sys.stderr, level=logging.INFO)
14
+ logger = logging.getLogger(__name__)
15
+
16
+ # Set environment variables untuk nonaktifkan cache
17
+ os.environ["TRANSFORMERS_OFFLINE"] = "1"
18
+ os.environ["HF_DATASETS_OFFLINE"] = "1"
19
+ os.environ["HUGGINGFACE_HUB_CACHE"] = "/tmp" # Arahkan cache ke /tmp
20
+ os.environ["HFC_USER_AGENT_DISABLE_TELEMETRY"] = "1" # Nonaktifkan telemetry
21
+
22
+ # Global Variables
23
+ MODEL_NAME = "second-state/Qwen3-0.6B-GGUF"
24
+ MODEL_BASENAME = "Qwen3-0.6B-Q4_K_S.gguf"
25
+ MODEL_PATH = "/app/models"
26
+ MODEL_FILE = os.path.join(MODEL_PATH, MODEL_BASENAME)
27
+
28
+ # Load Model (Qwen3-0.6B-GGUF)
29
+ def load_model():
30
+ logger.info("Sedang memuat model GGUF dari lokal...")
31
+ try:
32
+ # Pastikan model ada menggunakan huggingface_hub
33
+ logger.info(f"Memastikan model ada dengan hf_hub_download: {MODEL_NAME}, {MODEL_BASENAME}")
34
+ hf_hub_download(repo_id=MODEL_NAME, filename=MODEL_BASENAME, local_dir=MODEL_PATH, local_dir_use_symlinks=False)
35
+ logger.info("Model berhasil diunduh menggunakan hf_hub_download")
36
+
37
+ # Periksa apakah file model ada
38
+ if not os.path.exists(MODEL_FILE):
39
+ logger.error(f"File model tidak ditemukan: {MODEL_FILE}")
40
+ logger.error(f"Cek isi direktori /app/models: {os.listdir('/app/models') if os.path.exists('/app/models') else 'Direktori tidak ditemukan'}")
41
+ return None
42
+
43
+ logger.info(f"Memuat model dari path: {MODEL_FILE}")
44
+ llm = Llama(
45
+ model_path=MODEL_FILE,
46
+ n_gpu_layers=0, # Jalankan di CPU
47
+ n_threads=4,
48
+ verbose=True,
49
+ n_ctx=1024,
50
+ )
51
+ logger.info("Model GGUF berhasil dimuat!")
52
+ return llm
53
+ except Exception as e:
54
+ logger.error(f"Error loading model GGUF: {e}", exc_info=True)
55
+ return None
56
+
57
+ llm = load_model()
58
+
59
+ def ask_ai(prompt, llm_model):
60
+ try:
61
+ if llm_model is None:
62
+ return "Model gagal dimuat. Periksa log untuk detailnya."
63
+
64
+ # Format prompt untuk Qwen
65
+ formatted_prompt = f"Human: {prompt}\n<|file_separator|>Assistant:"
66
+
67
+ # Jalankan model
68
+ output = llm_model(
69
+ prompt, # formatted_prompt di model gemma ini tidak jalan
70
+ max_tokens=512,
71
+ temperature=0.7,
72
+ top_p=0.9,
73
+ stop=["<|file_separator|>"], #stop untuk Qwen
74
+ echo=False,
75
+ stream=False #Non Stream
76
+ )
77
+
78
+ # Extract text jawaban
79
+ jawaban = output['choices'][0]['text']
80
+
81
+ return jawaban.strip()
82
+ except Exception as e:
83
+ logger.error(f"Error selama inferensi: {e}", exc_info=True)
84
+ return f"Error: {e}"
85
+
86
+ # Endpoint / (untuk menerima POST request)
87
+ @app.route('/', methods=['POST'])
88
+ def ask_ai_endpoint():
89
+ try:
90
+ data = request.get_json() # Ambil data JSON dari request body
91
+ prompt = data.get('prompt') # Ambil prompt dari data JSON
92
+ if not prompt:
93
+ return jsonify({"error": "Prompt tidak ditemukan dalam request body"}), 400
94
+
95
+ jawaban = ask_ai(prompt, llm) # Dapatkan jawaban dari model
96
+ return jsonify({"jawaban": jawaban}) # Kembalikan jawaban sebagai JSON
97
+ except Exception as e:
98
+ logger.error(f"Error pada endpoint /: {e}", exc_info=True)
99
+ return jsonify({"error": str(e)}), 500
100
+
101
+ @app.route('/health', methods=['GET']) # Tambahkan health check
102
+ def health_check():
103
+ return jsonify({"status": "healthy"})
104
+
105
+ # Jalankan aplikasi Flask jika dijalankan langsung (untuk testing lokal)
106
+ if __name__ == '__main__':
107
+ import os
108
+ port = int(os.environ.get("PORT", 8501))
109
+ app.run(debug=True, host='0.0.0.0', port=port)