Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import sys
|
3 |
+
import os
|
4 |
+
import json
|
5 |
+
from flask import Flask, request, jsonify
|
6 |
+
from llama_cpp import Llama
|
7 |
+
from huggingface_hub import hf_hub_download
|
8 |
+
|
9 |
+
# Inisialisasi Flask app
|
10 |
+
app = Flask(__name__)
|
11 |
+
|
12 |
+
# Konfigurasi Logging
|
13 |
+
logging.basicConfig(stream=sys.stderr, level=logging.INFO)
|
14 |
+
logger = logging.getLogger(__name__)
|
15 |
+
|
16 |
+
# Set environment variables untuk nonaktifkan cache
|
17 |
+
os.environ["TRANSFORMERS_OFFLINE"] = "1"
|
18 |
+
os.environ["HF_DATASETS_OFFLINE"] = "1"
|
19 |
+
os.environ["HUGGINGFACE_HUB_CACHE"] = "/tmp" # Arahkan cache ke /tmp
|
20 |
+
os.environ["HFC_USER_AGENT_DISABLE_TELEMETRY"] = "1" # Nonaktifkan telemetry
|
21 |
+
|
22 |
+
# Global Variables
|
23 |
+
MODEL_NAME = "second-state/Qwen3-0.6B-GGUF"
|
24 |
+
MODEL_BASENAME = "Qwen3-0.6B-Q4_K_S.gguf"
|
25 |
+
MODEL_PATH = "/app/models"
|
26 |
+
MODEL_FILE = os.path.join(MODEL_PATH, MODEL_BASENAME)
|
27 |
+
|
28 |
+
# Load Model (Qwen3-0.6B-GGUF)
|
29 |
+
def load_model():
|
30 |
+
logger.info("Sedang memuat model GGUF dari lokal...")
|
31 |
+
try:
|
32 |
+
# Pastikan model ada menggunakan huggingface_hub
|
33 |
+
logger.info(f"Memastikan model ada dengan hf_hub_download: {MODEL_NAME}, {MODEL_BASENAME}")
|
34 |
+
hf_hub_download(repo_id=MODEL_NAME, filename=MODEL_BASENAME, local_dir=MODEL_PATH, local_dir_use_symlinks=False)
|
35 |
+
logger.info("Model berhasil diunduh menggunakan hf_hub_download")
|
36 |
+
|
37 |
+
# Periksa apakah file model ada
|
38 |
+
if not os.path.exists(MODEL_FILE):
|
39 |
+
logger.error(f"File model tidak ditemukan: {MODEL_FILE}")
|
40 |
+
logger.error(f"Cek isi direktori /app/models: {os.listdir('/app/models') if os.path.exists('/app/models') else 'Direktori tidak ditemukan'}")
|
41 |
+
return None
|
42 |
+
|
43 |
+
logger.info(f"Memuat model dari path: {MODEL_FILE}")
|
44 |
+
llm = Llama(
|
45 |
+
model_path=MODEL_FILE,
|
46 |
+
n_gpu_layers=0, # Jalankan di CPU
|
47 |
+
n_threads=4,
|
48 |
+
verbose=True,
|
49 |
+
n_ctx=1024,
|
50 |
+
)
|
51 |
+
logger.info("Model GGUF berhasil dimuat!")
|
52 |
+
return llm
|
53 |
+
except Exception as e:
|
54 |
+
logger.error(f"Error loading model GGUF: {e}", exc_info=True)
|
55 |
+
return None
|
56 |
+
|
57 |
+
llm = load_model()
|
58 |
+
|
59 |
+
def ask_ai(prompt, llm_model):
|
60 |
+
try:
|
61 |
+
if llm_model is None:
|
62 |
+
return "Model gagal dimuat. Periksa log untuk detailnya."
|
63 |
+
|
64 |
+
# Format prompt untuk Qwen
|
65 |
+
formatted_prompt = f"Human: {prompt}\n<|file_separator|>Assistant:"
|
66 |
+
|
67 |
+
# Jalankan model
|
68 |
+
output = llm_model(
|
69 |
+
prompt, # formatted_prompt di model gemma ini tidak jalan
|
70 |
+
max_tokens=512,
|
71 |
+
temperature=0.7,
|
72 |
+
top_p=0.9,
|
73 |
+
stop=["<|file_separator|>"], #stop untuk Qwen
|
74 |
+
echo=False,
|
75 |
+
stream=False #Non Stream
|
76 |
+
)
|
77 |
+
|
78 |
+
# Extract text jawaban
|
79 |
+
jawaban = output['choices'][0]['text']
|
80 |
+
|
81 |
+
return jawaban.strip()
|
82 |
+
except Exception as e:
|
83 |
+
logger.error(f"Error selama inferensi: {e}", exc_info=True)
|
84 |
+
return f"Error: {e}"
|
85 |
+
|
86 |
+
# Endpoint / (untuk menerima POST request)
|
87 |
+
@app.route('/', methods=['POST'])
|
88 |
+
def ask_ai_endpoint():
|
89 |
+
try:
|
90 |
+
data = request.get_json() # Ambil data JSON dari request body
|
91 |
+
prompt = data.get('prompt') # Ambil prompt dari data JSON
|
92 |
+
if not prompt:
|
93 |
+
return jsonify({"error": "Prompt tidak ditemukan dalam request body"}), 400
|
94 |
+
|
95 |
+
jawaban = ask_ai(prompt, llm) # Dapatkan jawaban dari model
|
96 |
+
return jsonify({"jawaban": jawaban}) # Kembalikan jawaban sebagai JSON
|
97 |
+
except Exception as e:
|
98 |
+
logger.error(f"Error pada endpoint /: {e}", exc_info=True)
|
99 |
+
return jsonify({"error": str(e)}), 500
|
100 |
+
|
101 |
+
@app.route('/health', methods=['GET']) # Tambahkan health check
|
102 |
+
def health_check():
|
103 |
+
return jsonify({"status": "healthy"})
|
104 |
+
|
105 |
+
# Jalankan aplikasi Flask jika dijalankan langsung (untuk testing lokal)
|
106 |
+
if __name__ == '__main__':
|
107 |
+
import os
|
108 |
+
port = int(os.environ.get("PORT", 8501))
|
109 |
+
app.run(debug=True, host='0.0.0.0', port=port)
|