Spaces:
Running
Running
maxiaolong03
commited on
Commit
·
eea129f
1
Parent(s):
b8aaafe
add files
Browse files- .gitignore +1 -0
- app.py +541 -0
- assets/logo.png +0 -0
- bot_requests.py +388 -0
- requirements.txt +14 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
.idea
|
app.py
ADDED
@@ -0,0 +1,541 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
2 |
+
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
"""This file contains the code for the chatbot demo using Gradio."""
|
16 |
+
|
17 |
+
import argparse
|
18 |
+
from collections import namedtuple
|
19 |
+
from functools import partial
|
20 |
+
import logging
|
21 |
+
import os
|
22 |
+
import base64
|
23 |
+
from argparse import ArgumentParser
|
24 |
+
|
25 |
+
import gradio as gr
|
26 |
+
|
27 |
+
from bot_requests import BotClient
|
28 |
+
|
29 |
+
os.environ["NO_PROXY"] = "localhost,127.0.0.1" # Disable proxy
|
30 |
+
|
31 |
+
logging.root.setLevel(logging.INFO)
|
32 |
+
|
33 |
+
|
34 |
+
def get_args() -> argparse.Namespace:
|
35 |
+
"""
|
36 |
+
Parses and returns command line arguments for configuring the chatbot demo.
|
37 |
+
Sets up argument parser with default values for server configuration and model endpoints.
|
38 |
+
The arguments include:
|
39 |
+
- Server port and name for the Gradio interface
|
40 |
+
- Character limits and retry settings for conversation handling
|
41 |
+
- Model endpoints for different AI services
|
42 |
+
- API keys and other service configurations
|
43 |
+
|
44 |
+
Returns:
|
45 |
+
argparse.Namespace: Parsed command line arguments containing:
|
46 |
+
- server_port (int): Port number for the demo server (default: 8232)
|
47 |
+
- server_name (str): Hostname/IP for the server (default: "0.0.0.0")
|
48 |
+
- max_char (int): Maximum character limit for messages (default: 8000)
|
49 |
+
- max_retry_num (int): Maximum retry attempts for API calls (default: 3)
|
50 |
+
- eb45t_model_url (str): Endpoint URL for the multimodal model
|
51 |
+
- x1_model_url (str): Endpoint URL for the text inference model
|
52 |
+
"""
|
53 |
+
parser = ArgumentParser(description="ERNIE models web chat demo.")
|
54 |
+
|
55 |
+
parser.add_argument(
|
56 |
+
"--server-port", type=int, default=7860, help="Demo server port."
|
57 |
+
)
|
58 |
+
parser.add_argument(
|
59 |
+
"--server-name", type=str, default="0.0.0.0", help="Demo server name."
|
60 |
+
)
|
61 |
+
parser.add_argument(
|
62 |
+
"--max_char", type=int, default=8000, help="Maximum character limit for messages."
|
63 |
+
)
|
64 |
+
parser.add_argument(
|
65 |
+
"--max_retry_num", type=int, default=3, help="Maximum retry number for request."
|
66 |
+
)
|
67 |
+
parser.add_argument(
|
68 |
+
"--eb45t_model_url",
|
69 |
+
type=str,
|
70 |
+
default="https://qianfan.baidubce.com/v2",
|
71 |
+
help="Model URL for multimodal model."
|
72 |
+
)
|
73 |
+
parser.add_argument(
|
74 |
+
"--x1_model_url",
|
75 |
+
type=str,
|
76 |
+
default="https://qianfan.baidubce.com/v2",
|
77 |
+
help="Model URL for text inference model."
|
78 |
+
)
|
79 |
+
|
80 |
+
args = parser.parse_args()
|
81 |
+
return args
|
82 |
+
|
83 |
+
|
84 |
+
class GradioEvents(object):
|
85 |
+
"""
|
86 |
+
Central handler for all Gradio interface events in the chatbot demo. Provides static methods
|
87 |
+
for processing user interactions including:
|
88 |
+
- Streaming chat predictions with reasoning steps
|
89 |
+
- Response regeneration
|
90 |
+
- Conversation state management
|
91 |
+
- Image handling and URL conversion
|
92 |
+
- Component visibility control
|
93 |
+
|
94 |
+
Coordinates with BotClient to interface with backend models while maintaining
|
95 |
+
conversation history and handling multimodal inputs.
|
96 |
+
"""
|
97 |
+
@staticmethod
|
98 |
+
def get_image_url(image_path: str) -> str:
|
99 |
+
"""
|
100 |
+
Converts an image file at the given path to a base64 encoded data URL
|
101 |
+
that can be used directly in HTML or Gradio interfaces.
|
102 |
+
Reads the image file, encodes it in base64 format, and constructs
|
103 |
+
a data URL with the appropriate image MIME type.
|
104 |
+
|
105 |
+
Args:
|
106 |
+
image_path (str): Path to the image file.
|
107 |
+
|
108 |
+
Returns:
|
109 |
+
str: Image URL.
|
110 |
+
"""
|
111 |
+
base64_image = ""
|
112 |
+
extension = image_path.split(".")[-1]
|
113 |
+
with open(image_path, "rb") as image_file:
|
114 |
+
base64_image = base64.b64encode(image_file.read()).decode("utf-8")
|
115 |
+
url = "data:image/{ext};base64,{img}".format(ext=extension, img=base64_image)
|
116 |
+
return url
|
117 |
+
|
118 |
+
@staticmethod
|
119 |
+
def chat_stream(
|
120 |
+
query: str,
|
121 |
+
task_history: list,
|
122 |
+
image_history: dict,
|
123 |
+
model_name: str,
|
124 |
+
file_url: str,
|
125 |
+
system_msg: str,
|
126 |
+
max_tokens: int,
|
127 |
+
temperature: float,
|
128 |
+
top_p: float,
|
129 |
+
bot_client: BotClient
|
130 |
+
) -> dict:
|
131 |
+
"""
|
132 |
+
Handles streaming chat interactions by processing user queries and
|
133 |
+
generating real-time responses from the bot client. Constructs conversation
|
134 |
+
history including system messages, text inputs and image attachments, then
|
135 |
+
streams back model responses with reasoning steps and final answers.
|
136 |
+
|
137 |
+
Args:
|
138 |
+
query (str): User input.
|
139 |
+
task_history (list): Task history.
|
140 |
+
image_history (dict): Image history.
|
141 |
+
model_name (str): Model name.
|
142 |
+
file_url (str): File URL.
|
143 |
+
system_msg (str): System message.
|
144 |
+
max_tokens (int): Maximum tokens.
|
145 |
+
temperature (float): Temperature.
|
146 |
+
top_p (float): Top p.
|
147 |
+
bot_client (BotClient): Bot client.
|
148 |
+
|
149 |
+
Yields:
|
150 |
+
dict: A dictionary containing the event type and its corresponding content.
|
151 |
+
"""
|
152 |
+
conversation = []
|
153 |
+
if system_msg:
|
154 |
+
conversation.append({"role": "system", "content": system_msg})
|
155 |
+
for idx, (query_h, response_h) in enumerate(task_history):
|
156 |
+
if idx in image_history:
|
157 |
+
content = []
|
158 |
+
content.append({
|
159 |
+
"type": "image_url",
|
160 |
+
"image_url": {"url": GradioEvents.get_image_url(image_history[idx])}
|
161 |
+
})
|
162 |
+
content.append({"type": "text", "text": query_h})
|
163 |
+
conversation.append({"role": "user", "content": content})
|
164 |
+
else:
|
165 |
+
conversation.append({"role": "user", "content": query_h})
|
166 |
+
conversation.append({"role": "assistant", "content": response_h})
|
167 |
+
|
168 |
+
content = []
|
169 |
+
if file_url and (len(image_history) == 0 or file_url != list(image_history.values())[-1]):
|
170 |
+
image_history[len(task_history)] = file_url
|
171 |
+
content.append({"type": "image_url", "image_url": {"url": GradioEvents.get_image_url(file_url)}})
|
172 |
+
content.append({"type": "text", "text": query})
|
173 |
+
conversation.append({"role": "user", "content": content})
|
174 |
+
else:
|
175 |
+
conversation.append({"role": "user", "content": query})
|
176 |
+
|
177 |
+
|
178 |
+
try:
|
179 |
+
req_data = {"messages": conversation}
|
180 |
+
for chunk in bot_client.process_stream(model_name, req_data, max_tokens, temperature, top_p):
|
181 |
+
if "error" in chunk:
|
182 |
+
raise Exception(chunk["error"])
|
183 |
+
|
184 |
+
message = chunk.get("choices", [{}])[0].get("delta", {})
|
185 |
+
content = message.get("content", "")
|
186 |
+
reasoning_content = message.get("reasoning_content", "")
|
187 |
+
|
188 |
+
if reasoning_content:
|
189 |
+
yield {"type": "thinking", "content": reasoning_content}
|
190 |
+
if content:
|
191 |
+
yield {"type": "answer", "content": content}
|
192 |
+
|
193 |
+
except Exception as e:
|
194 |
+
raise gr.Error("Exception: " + repr(e))
|
195 |
+
|
196 |
+
@staticmethod
|
197 |
+
def predict_stream(
|
198 |
+
query: str,
|
199 |
+
chatbot: list,
|
200 |
+
task_history: list,
|
201 |
+
image_history: dict,
|
202 |
+
model: str,
|
203 |
+
file_url: str,
|
204 |
+
system_msg: str,
|
205 |
+
max_tokens: int,
|
206 |
+
temperature: float,
|
207 |
+
top_p: float,
|
208 |
+
bot_client: BotClient
|
209 |
+
) -> list:
|
210 |
+
"""
|
211 |
+
Processes user queries in a streaming manner by coordinating with the chat stream handler,
|
212 |
+
progressively updates the chatbot state with intermediate reasoning steps and final responses,
|
213 |
+
and maintains conversation history. Handles both text and multimodal inputs while preserving
|
214 |
+
the interactive chat experience with real-time updates.
|
215 |
+
|
216 |
+
Args:
|
217 |
+
query (str): The user's query.
|
218 |
+
chatbot (list): The current chatbot state.
|
219 |
+
task_history (list): The task history.
|
220 |
+
image_history (dict): The image history.
|
221 |
+
model (str): The model name.
|
222 |
+
file_url (str): The file URL.
|
223 |
+
system_msg (str): The system message.
|
224 |
+
max_tokens (int): The maximum token length of the generated response.
|
225 |
+
temperature (float): The temperature parameter used by the model.
|
226 |
+
top_p (float): The top_p parameter used by the model.
|
227 |
+
bot_client (BotClient): The bot client.
|
228 |
+
|
229 |
+
Returns:
|
230 |
+
list: A list containing the updated chatbot state after processing the user's query.
|
231 |
+
"""
|
232 |
+
|
233 |
+
logging.info("User: {}".format(query))
|
234 |
+
chatbot.append({"role": "user", "content": query})
|
235 |
+
|
236 |
+
# First yield the chatbot with user message
|
237 |
+
yield chatbot
|
238 |
+
|
239 |
+
new_texts = GradioEvents.chat_stream(
|
240 |
+
query,
|
241 |
+
task_history,
|
242 |
+
image_history,
|
243 |
+
model,
|
244 |
+
file_url,
|
245 |
+
system_msg,
|
246 |
+
max_tokens,
|
247 |
+
temperature,
|
248 |
+
top_p,
|
249 |
+
bot_client
|
250 |
+
)
|
251 |
+
|
252 |
+
reasoning_content = ""
|
253 |
+
response = ""
|
254 |
+
has_thinking = False
|
255 |
+
for new_text in new_texts:
|
256 |
+
if not isinstance(new_text, dict):
|
257 |
+
continue
|
258 |
+
|
259 |
+
if new_text.get("type") == "thinking":
|
260 |
+
has_thinking = True
|
261 |
+
reasoning_content += new_text["content"]
|
262 |
+
|
263 |
+
elif new_text.get("type") == "answer":
|
264 |
+
response += new_text["content"]
|
265 |
+
|
266 |
+
# Remove previous thinking message if exists
|
267 |
+
if chatbot[-1].get("role") == "assistant":
|
268 |
+
chatbot.pop(-1)
|
269 |
+
|
270 |
+
content = ""
|
271 |
+
if has_thinking:
|
272 |
+
content = "**思考过程:**<br>{}<br>".format(reasoning_content)
|
273 |
+
if response:
|
274 |
+
if has_thinking:
|
275 |
+
content += "<br><br>**最终回答:**<br>{}".format(response)
|
276 |
+
else:
|
277 |
+
content = response
|
278 |
+
|
279 |
+
if content:
|
280 |
+
chatbot.append({"role": "assistant", "content": content})
|
281 |
+
yield chatbot
|
282 |
+
|
283 |
+
logging.info("History: {}".format(task_history))
|
284 |
+
task_history.append((query, response))
|
285 |
+
logging.info("ERNIE models: {}".format(response))
|
286 |
+
|
287 |
+
@staticmethod
|
288 |
+
def regenerate(
|
289 |
+
chatbot: list,
|
290 |
+
task_history: list,
|
291 |
+
image_history: dict,
|
292 |
+
model: str,
|
293 |
+
file_url: str,
|
294 |
+
system_msg: str,
|
295 |
+
max_tokens: int,
|
296 |
+
temperature: float,
|
297 |
+
top_p: float,
|
298 |
+
bot_client: BotClient
|
299 |
+
) -> list:
|
300 |
+
"""
|
301 |
+
Reconstructs the conversation context by removing the last interaction and
|
302 |
+
reprocesses the user's previous query to generate a fresh response. Maintains
|
303 |
+
consistency in conversation flow while allowing response regeneration.
|
304 |
+
|
305 |
+
Args:
|
306 |
+
chatbot (list): The current chatbot state.
|
307 |
+
task_history (list): The task history.
|
308 |
+
image_history (dict): The image history.
|
309 |
+
model (str): The model name.
|
310 |
+
file_url (str): The file URL.
|
311 |
+
system_msg (str): The system message.
|
312 |
+
max_tokens (int): The maximum token length of the generated response.
|
313 |
+
temperature (float): The temperature parameter used by the model.
|
314 |
+
top_p (float): The top_p parameter used by the model.
|
315 |
+
bot_client (BotClient): The bot client.
|
316 |
+
|
317 |
+
Yields:
|
318 |
+
list: A list containing the updated chatbot state after processing the user's query.
|
319 |
+
"""
|
320 |
+
if not task_history:
|
321 |
+
yield chatbot
|
322 |
+
return
|
323 |
+
# Pop the last user query and bot response from task_history
|
324 |
+
item = task_history.pop(-1)
|
325 |
+
if (len(task_history)) in image_history:
|
326 |
+
del image_history[len(task_history)]
|
327 |
+
while len(chatbot) != 0 and chatbot[-1].get("role") == "assistant":
|
328 |
+
chatbot.pop(-1)
|
329 |
+
chatbot.pop(-1)
|
330 |
+
|
331 |
+
for chunk in GradioEvents.predict_stream(
|
332 |
+
item[0],
|
333 |
+
chatbot,
|
334 |
+
task_history,
|
335 |
+
image_history,
|
336 |
+
model,
|
337 |
+
file_url,
|
338 |
+
system_msg,
|
339 |
+
max_tokens,
|
340 |
+
temperature,
|
341 |
+
top_p,
|
342 |
+
bot_client
|
343 |
+
):
|
344 |
+
yield chunk
|
345 |
+
|
346 |
+
@staticmethod
|
347 |
+
def reset_user_input() -> gr.update:
|
348 |
+
"""
|
349 |
+
Reset user input field value to empty string.
|
350 |
+
|
351 |
+
Returns:
|
352 |
+
gr.update: Update object representing the new value of the user input field.
|
353 |
+
"""
|
354 |
+
return gr.update(value="")
|
355 |
+
|
356 |
+
@staticmethod
|
357 |
+
def reset_state() -> tuple:
|
358 |
+
"""
|
359 |
+
Reset all states including chatbot, task_history, image_history, and file_btn.
|
360 |
+
|
361 |
+
Returns:
|
362 |
+
tuple: A tuple containing the following values:
|
363 |
+
- chatbot (list): An empty list that represents the cleared chatbot state.
|
364 |
+
- task_history (list): An empty list that represents the cleared task history.
|
365 |
+
- image_history (dict): An empty dictionary that represents the cleared image history.
|
366 |
+
- file_btn (gr.update): An update object that sets the value of the file button to None.
|
367 |
+
"""
|
368 |
+
GradioEvents.gc()
|
369 |
+
|
370 |
+
reset_result = namedtuple("reset_result",
|
371 |
+
["chatbot",
|
372 |
+
"task_history",
|
373 |
+
"image_history",
|
374 |
+
"file_btn"])
|
375 |
+
return reset_result(
|
376 |
+
[], # clear chatbot
|
377 |
+
[], # clear task_history
|
378 |
+
{}, # clear image_history
|
379 |
+
gr.update(value=None), # clear file_btn
|
380 |
+
)
|
381 |
+
|
382 |
+
@staticmethod
|
383 |
+
def gc():
|
384 |
+
"""Run garbage collection to free up memory resources."""
|
385 |
+
import gc
|
386 |
+
|
387 |
+
gc.collect()
|
388 |
+
|
389 |
+
@staticmethod
|
390 |
+
def toggle_components_visibility(model_name: str) -> tuple:
|
391 |
+
"""
|
392 |
+
Toggle visibility of components depending on the selected model name.
|
393 |
+
|
394 |
+
Args:
|
395 |
+
model_name (str): Name of the selected model.
|
396 |
+
|
397 |
+
Returns:
|
398 |
+
tuple: A tuple containing two updates: one for the file button and another for the system message.
|
399 |
+
"""
|
400 |
+
is_eb45t = (model_name == "eb-45t")
|
401 |
+
return (
|
402 |
+
gr.update(visible=is_eb45t), # file_btn
|
403 |
+
gr.update(visible=is_eb45t) # system_message
|
404 |
+
)
|
405 |
+
|
406 |
+
|
407 |
+
def launch_demo(args: argparse.Namespace, bot_client: BotClient):
|
408 |
+
"""
|
409 |
+
Launch demo program
|
410 |
+
|
411 |
+
Args:
|
412 |
+
args (argparse.Namespace): argparse Namespace object containing parsed command line arguments
|
413 |
+
bot_client (BotClient): Bot client instance
|
414 |
+
"""
|
415 |
+
css = """
|
416 |
+
/* Hide original Chinese text */
|
417 |
+
#file-upload .wrap {
|
418 |
+
font-size: 0 !important;
|
419 |
+
position: relative;
|
420 |
+
display: flex;
|
421 |
+
flex-direction: column;
|
422 |
+
align-items: center;
|
423 |
+
justify-content: center;
|
424 |
+
}
|
425 |
+
|
426 |
+
/* Insert English prompt text below the SVG icon */
|
427 |
+
#file-upload .wrap::after {
|
428 |
+
content: "Drag and drop files here or click to upload";
|
429 |
+
font-size: 18px;
|
430 |
+
color: #555;
|
431 |
+
margin-top: 8px;
|
432 |
+
white-space: nowrap;
|
433 |
+
}
|
434 |
+
"""
|
435 |
+
model_names = ["eb-45t", "eb-x1"]
|
436 |
+
|
437 |
+
with gr.Blocks(css=css) as demo:
|
438 |
+
logo_url = GradioEvents.get_image_url("assets/logo.png")
|
439 |
+
gr.Markdown("""\
|
440 |
+
<p align="center"><img src="{}" \
|
441 |
+
style="height: 60px"/><p>""".format(logo_url))
|
442 |
+
gr.Markdown(
|
443 |
+
"""\
|
444 |
+
<center><font size=3>This demo is based on ERNIE models. \
|
445 |
+
(本演示基于文心大模型实现。)</center>"""
|
446 |
+
)
|
447 |
+
gr.Markdown("""\
|
448 |
+
<center><font size=4>
|
449 |
+
<a href="https://yiyan.baidu.com/">eb-45t</a> |
|
450 |
+
 <a href="https://yiyan.baidu.com/">eb-x1</a></center>""")
|
451 |
+
|
452 |
+
chatbot = gr.Chatbot(
|
453 |
+
label="ERNIE",
|
454 |
+
elem_classes="control-height",
|
455 |
+
type="messages"
|
456 |
+
)
|
457 |
+
with gr.Row():
|
458 |
+
model_name = gr.Dropdown(label="Select Model", choices=model_names, value="eb-45t", allow_custom_value=True)
|
459 |
+
file_btn = gr.File(
|
460 |
+
label="Image upload (Active only for multimodal models. Accepted formats: PNG, JPEG, JPG)",
|
461 |
+
height="80px",
|
462 |
+
visible=True,
|
463 |
+
file_types=[".png", ".jpeg", "jpg"],
|
464 |
+
elem_id="file-upload"
|
465 |
+
)
|
466 |
+
query = gr.Textbox(label="Input", elem_id="text_input")
|
467 |
+
|
468 |
+
with gr.Row():
|
469 |
+
empty_btn = gr.Button("🧹 Clear History(清除历史)")
|
470 |
+
submit_btn = gr.Button("🚀 Submit(发送)", elem_id="submit-button")
|
471 |
+
regen_btn = gr.Button("🤔️ Regenerate(重试)")
|
472 |
+
|
473 |
+
with gr.Accordion("⚙️ Advanced Config", open=False): # open=False means collapsed by default
|
474 |
+
system_message = gr.Textbox(value="", label="System message", visible=True)
|
475 |
+
additional_inputs = [
|
476 |
+
system_message,
|
477 |
+
gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max new tokens"),
|
478 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=1.0, step=0.05, label="Temperature"),
|
479 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.05, label="Top-p (nucleus sampling)")
|
480 |
+
]
|
481 |
+
|
482 |
+
task_history = gr.State([])
|
483 |
+
image_history = gr.State({})
|
484 |
+
|
485 |
+
model_name.change(
|
486 |
+
GradioEvents.toggle_components_visibility,
|
487 |
+
inputs=model_name,
|
488 |
+
outputs=[file_btn, system_message]
|
489 |
+
)
|
490 |
+
model_name.change(
|
491 |
+
GradioEvents.reset_state,
|
492 |
+
outputs=[chatbot, task_history, image_history, file_btn],
|
493 |
+
show_progress=True
|
494 |
+
)
|
495 |
+
predict_with_clients = partial(
|
496 |
+
GradioEvents.predict_stream,
|
497 |
+
bot_client=bot_client
|
498 |
+
)
|
499 |
+
regenerate_with_clients = partial(
|
500 |
+
GradioEvents.regenerate,
|
501 |
+
bot_client=bot_client
|
502 |
+
)
|
503 |
+
query.submit(
|
504 |
+
predict_with_clients,
|
505 |
+
inputs=[query, chatbot, task_history, image_history, model_name, file_btn] + additional_inputs,
|
506 |
+
outputs=[chatbot],
|
507 |
+
show_progress=True
|
508 |
+
)
|
509 |
+
query.submit(GradioEvents.reset_user_input, [], [query])
|
510 |
+
submit_btn.click(
|
511 |
+
predict_with_clients,
|
512 |
+
inputs=[query, chatbot, task_history, image_history, model_name, file_btn] + additional_inputs,
|
513 |
+
outputs=[chatbot],
|
514 |
+
show_progress=True,
|
515 |
+
)
|
516 |
+
submit_btn.click(GradioEvents.reset_user_input, [], [query])
|
517 |
+
empty_btn.click(
|
518 |
+
GradioEvents.reset_state,
|
519 |
+
outputs=[chatbot, task_history, image_history, file_btn],
|
520 |
+
show_progress=True
|
521 |
+
)
|
522 |
+
regen_btn.click(
|
523 |
+
regenerate_with_clients,
|
524 |
+
inputs=[chatbot, task_history, image_history, model_name, file_btn] + additional_inputs,
|
525 |
+
outputs=[chatbot],
|
526 |
+
show_progress=True
|
527 |
+
)
|
528 |
+
|
529 |
+
demo.queue().launch(
|
530 |
+
server_port=args.server_port,
|
531 |
+
server_name=args.server_name
|
532 |
+
)
|
533 |
+
|
534 |
+
def main():
|
535 |
+
"""Main function that runs when this script is executed."""
|
536 |
+
args = get_args()
|
537 |
+
bot_client = BotClient(args)
|
538 |
+
launch_demo(args, bot_client)
|
539 |
+
|
540 |
+
if __name__ == "__main__":
|
541 |
+
main()
|
assets/logo.png
ADDED
![]() |
bot_requests.py
ADDED
@@ -0,0 +1,388 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
2 |
+
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
"""BotClient class for interacting with bot models."""
|
16 |
+
|
17 |
+
import os
|
18 |
+
import argparse
|
19 |
+
import logging
|
20 |
+
import traceback
|
21 |
+
import json
|
22 |
+
import jieba
|
23 |
+
from openai import OpenAI
|
24 |
+
|
25 |
+
from appbuilder.mcp_server.client import MCPClient
|
26 |
+
|
27 |
+
class BotClient(object):
|
28 |
+
"""Client for interacting with various AI models."""
|
29 |
+
def __init__(self, args: argparse.Namespace):
|
30 |
+
"""
|
31 |
+
Initializes the BotClient instance by configuring essential parameters from command line arguments
|
32 |
+
including retry limits, character constraints, model endpoints and API credentials while setting up
|
33 |
+
default values for missing arguments to ensure robust operation.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
args (argparse.Namespace): Command line arguments containing configuration parameters.
|
37 |
+
Uses getattr() to safely retrieve values with fallback defaults.
|
38 |
+
"""
|
39 |
+
self.logger = logging.getLogger(__name__)
|
40 |
+
|
41 |
+
self.max_retry_num = getattr(args, 'max_retry_num', 3)
|
42 |
+
self.max_char = getattr(args, 'max_char', 8000)
|
43 |
+
|
44 |
+
self.eb45t_model_url = getattr(args, 'eb45t_model_url', 'eb45t_model_url')
|
45 |
+
self.x1_model_url = getattr(args, 'x1_model_url', 'x1_model_url')
|
46 |
+
self.api_key = os.environ.get("API_KEY")
|
47 |
+
|
48 |
+
self.qianfan_url = getattr(args, 'qianfan_url', 'qianfan_url')
|
49 |
+
self.qianfan_api_key = getattr(args, 'qianfan_api_key', 'qianfan_api_key')
|
50 |
+
self.embedding_model = getattr(args, 'embedding_model', 'embedding_model')
|
51 |
+
|
52 |
+
self.ai_search_service_url = getattr(args, 'ai_search_service_url', 'ai_search_service_url')
|
53 |
+
|
54 |
+
def call_back(self, host_url: str, req_data: dict) -> dict:
|
55 |
+
"""
|
56 |
+
Executes an HTTP request to the specified endpoint using the OpenAI client, handles the response
|
57 |
+
conversion to a compatible dictionary format, and manages any exceptions that may occur during
|
58 |
+
the request process while logging errors appropriately.
|
59 |
+
|
60 |
+
Args:
|
61 |
+
host_url (str): The URL to send the request to.
|
62 |
+
req_data (dict): The data to send in the request body.
|
63 |
+
|
64 |
+
Returns:
|
65 |
+
dict: Parsed JSON response from the server. Returns empty dict
|
66 |
+
if request fails or response is invalid.
|
67 |
+
"""
|
68 |
+
try:
|
69 |
+
client = OpenAI(base_url=host_url, api_key=self.api_key)
|
70 |
+
response = client.chat.completions.create(
|
71 |
+
**req_data
|
72 |
+
)
|
73 |
+
|
74 |
+
# Convert OpenAI response to compatible format
|
75 |
+
return response.model_dump()
|
76 |
+
|
77 |
+
except Exception as e:
|
78 |
+
self.logger.error("Stream request failed: {}".format(e))
|
79 |
+
raise
|
80 |
+
|
81 |
+
def call_back_stream(self, host_url: str, req_data: dict) -> dict:
|
82 |
+
"""
|
83 |
+
Makes a streaming HTTP request to the specified host URL using the OpenAI client and yields response chunks
|
84 |
+
in real-time while handling any exceptions that may occur during the streaming process.
|
85 |
+
|
86 |
+
Args:
|
87 |
+
host_url (str): The URL to send the request to.
|
88 |
+
req_data (dict): The data to send in the request body.
|
89 |
+
|
90 |
+
Returns:
|
91 |
+
generator: Generator that yields parsed JSON responses from the server.
|
92 |
+
"""
|
93 |
+
try:
|
94 |
+
client = OpenAI(base_url=host_url, api_key=self.api_key)
|
95 |
+
response = client.chat.completions.create(
|
96 |
+
**req_data,
|
97 |
+
stream=True,
|
98 |
+
)
|
99 |
+
for chunk in response:
|
100 |
+
if not chunk.choices:
|
101 |
+
continue
|
102 |
+
|
103 |
+
# Convert OpenAI response to compatible format
|
104 |
+
yield chunk.model_dump()
|
105 |
+
|
106 |
+
except Exception as e:
|
107 |
+
self.logger.error("Stream request failed: {}".format(e))
|
108 |
+
raise
|
109 |
+
|
110 |
+
def process(
|
111 |
+
self,
|
112 |
+
model_name: str,
|
113 |
+
req_data: dict,
|
114 |
+
max_tokens: int=2048,
|
115 |
+
temperature: float=1.0,
|
116 |
+
top_p: float=0.7
|
117 |
+
) -> dict:
|
118 |
+
"""
|
119 |
+
Handles chat completion requests by mapping the model name to its endpoint, preparing request parameters
|
120 |
+
including token limits and sampling settings, truncating messages to fit character limits, making API calls
|
121 |
+
with built-in retry mechanism, and logging the full request/response cycle for debugging purposes.
|
122 |
+
|
123 |
+
Args:
|
124 |
+
model_name (str): Name of the model, used to look up the model URL from model_map.
|
125 |
+
req_data (dict): Dictionary containing request data, including information to be processed.
|
126 |
+
max_tokens (int): Maximum number of tokens to generate.
|
127 |
+
temperature (float): Sampling temperature to control the diversity of generated text.
|
128 |
+
top_p (float): Cumulative probability threshold to control the diversity of generated text.
|
129 |
+
|
130 |
+
Returns:
|
131 |
+
dict: Dictionary containing the model's processing results.
|
132 |
+
"""
|
133 |
+
model_map = {
|
134 |
+
"eb-45t": self.eb45t_model_url,
|
135 |
+
"eb-x1": self.x1_model_url
|
136 |
+
}
|
137 |
+
|
138 |
+
model_url = model_map[model_name]
|
139 |
+
|
140 |
+
req_data["model"] = "ernie-4.5-turbo-vl-32k" if "eb-45t" == model_name else "ernie-x1-turbo-32k"
|
141 |
+
req_data["max_tokens"] = max_tokens
|
142 |
+
req_data["temperature"] = temperature
|
143 |
+
req_data["top_p"] = top_p
|
144 |
+
req_data["messages"] = self.truncate_messages(req_data["messages"])
|
145 |
+
for _ in range(self.max_retry_num):
|
146 |
+
try:
|
147 |
+
self.logger.info("[MODEL] {}".format(model_url))
|
148 |
+
self.logger.info("[req_data]====>")
|
149 |
+
self.logger.info(json.dumps(req_data, ensure_ascii=False))
|
150 |
+
res = self.call_back(model_url, req_data)
|
151 |
+
self.logger.info("model response")
|
152 |
+
self.logger.info(res)
|
153 |
+
self.logger.info("-" * 30)
|
154 |
+
except Exception as e:
|
155 |
+
self.logger.info(e)
|
156 |
+
self.logger.info(traceback.format_exc())
|
157 |
+
res = {}
|
158 |
+
if len(res) != 0 and "error" not in res:
|
159 |
+
break
|
160 |
+
self.logger.info(json.dumps(res, ensure_ascii=False))
|
161 |
+
|
162 |
+
return res
|
163 |
+
|
164 |
+
def process_stream(
|
165 |
+
self, model_name: str,
|
166 |
+
req_data: dict,
|
167 |
+
max_tokens: int=2048,
|
168 |
+
temperature: float=1.0,
|
169 |
+
top_p: float=0.7
|
170 |
+
) -> dict:
|
171 |
+
"""
|
172 |
+
Processes streaming requests by mapping the model name to its endpoint, configuring request parameters,
|
173 |
+
implementing a retry mechanism with logging, and streaming back response chunks in real-time while
|
174 |
+
handling any errors that may occur during the streaming session.
|
175 |
+
|
176 |
+
Args:
|
177 |
+
model_name (str): Name of the model, used to look up the model URL from model_map.
|
178 |
+
req_data (dict): Dictionary containing request data, including information to be processed.
|
179 |
+
max_tokens (int): Maximum number of tokens to generate.
|
180 |
+
temperature (float): Sampling temperature to control the diversity of generated text.
|
181 |
+
top_p (float): Cumulative probability threshold to control the diversity of generated text.
|
182 |
+
|
183 |
+
Yields:
|
184 |
+
dict: Dictionary containing the model's processing results.
|
185 |
+
"""
|
186 |
+
model_map = {
|
187 |
+
"eb-45t": self.eb45t_model_url,
|
188 |
+
"eb-x1": self.x1_model_url
|
189 |
+
}
|
190 |
+
|
191 |
+
model_url = model_map[model_name]
|
192 |
+
req_data["model"] = "ernie-4.5-turbo-vl-32k" if "eb-45t" == model_name else "ernie-x1-turbo-32k"
|
193 |
+
req_data["max_tokens"] = max_tokens
|
194 |
+
req_data["temperature"] = temperature
|
195 |
+
req_data["top_p"] = top_p
|
196 |
+
req_data["messages"] = self.truncate_messages(req_data["messages"])
|
197 |
+
|
198 |
+
last_error = None
|
199 |
+
for _ in range(self.max_retry_num):
|
200 |
+
try:
|
201 |
+
self.logger.info("[MODEL] {}".format(model_url))
|
202 |
+
self.logger.info("[req_data]====>")
|
203 |
+
self.logger.info(json.dumps(req_data, ensure_ascii=False))
|
204 |
+
|
205 |
+
for chunk in self.call_back_stream(model_url, req_data):
|
206 |
+
yield chunk
|
207 |
+
return
|
208 |
+
|
209 |
+
except Exception as e:
|
210 |
+
last_error = e
|
211 |
+
self.logger.error("Stream request failed (attempt {}/{}): {}".format(_ + 1, self.max_retry_num, e))
|
212 |
+
|
213 |
+
self.logger.error("All retry attempts failed for stream request")
|
214 |
+
yield {"error": str(last_error)}
|
215 |
+
|
216 |
+
def cut_chinese_english(self, text: str) -> list:
|
217 |
+
"""
|
218 |
+
Segments mixed Chinese and English text into individual components using Jieba for Chinese words
|
219 |
+
while preserving English words as whole units, with special handling for Unicode character ranges
|
220 |
+
to distinguish between the two languages.
|
221 |
+
|
222 |
+
Args:
|
223 |
+
text (str): Input string to be segmented.
|
224 |
+
|
225 |
+
Returns:
|
226 |
+
list: A list of segments, where each segment is either a letter or a word.
|
227 |
+
"""
|
228 |
+
words = jieba.lcut(text)
|
229 |
+
en_ch_words = []
|
230 |
+
|
231 |
+
for word in words:
|
232 |
+
if word.isalpha() and not any("\u4e00" <= char <= "\u9fff" for char in word):
|
233 |
+
en_ch_words.append(word)
|
234 |
+
else:
|
235 |
+
en_ch_words.extend(list(word))
|
236 |
+
return en_ch_words
|
237 |
+
|
238 |
+
def truncate_messages(self, messages: list[dict]) -> list:
|
239 |
+
"""
|
240 |
+
Truncates conversation messages to fit within the maximum character limit (self.max_char)
|
241 |
+
by intelligently removing content while preserving message structure. The truncation follows
|
242 |
+
a prioritized order: historical messages first, then system message, and finally the last message.
|
243 |
+
|
244 |
+
Args:
|
245 |
+
messages (list[dict]): List of messages to be truncated.
|
246 |
+
|
247 |
+
Returns:
|
248 |
+
list[dict]: Modified list of messages after truncation.
|
249 |
+
"""
|
250 |
+
if not messages:
|
251 |
+
return messages
|
252 |
+
|
253 |
+
processed = []
|
254 |
+
total_units = 0
|
255 |
+
|
256 |
+
for msg in messages:
|
257 |
+
# Handle two different content formats
|
258 |
+
if isinstance(msg["content"], str):
|
259 |
+
text_content = msg["content"]
|
260 |
+
elif isinstance(msg["content"], list):
|
261 |
+
text_content = msg["content"][1]["text"]
|
262 |
+
else:
|
263 |
+
text_content = ""
|
264 |
+
|
265 |
+
# Calculate unit count after tokenization
|
266 |
+
units = self.cut_chinese_english(text_content)
|
267 |
+
unit_count = len(units)
|
268 |
+
|
269 |
+
processed.append({
|
270 |
+
"role": msg["role"],
|
271 |
+
"original_content": msg["content"], # Preserve original content
|
272 |
+
"text_content": text_content, # Extracted plain text
|
273 |
+
"units": units,
|
274 |
+
"unit_count": unit_count
|
275 |
+
})
|
276 |
+
total_units += unit_count
|
277 |
+
|
278 |
+
if total_units <= self.max_char:
|
279 |
+
return messages
|
280 |
+
|
281 |
+
# Number of units to remove
|
282 |
+
to_remove = total_units - self.max_char
|
283 |
+
|
284 |
+
# 1. Truncate historical messages
|
285 |
+
for i in range(1, len(processed) - 1):
|
286 |
+
if to_remove <= 0:
|
287 |
+
break
|
288 |
+
|
289 |
+
# current = processed[i]
|
290 |
+
if processed[i]["unit_count"] <= to_remove:
|
291 |
+
processed[i]["text_content"] = ""
|
292 |
+
to_remove -= processed[i]["unit_count"]
|
293 |
+
if isinstance(processed[i]["original_content"], str):
|
294 |
+
processed[i]["original_content"] = ""
|
295 |
+
elif isinstance(processed[i]["original_content"], list):
|
296 |
+
processed[i]["original_content"][1]["text"] = ""
|
297 |
+
else:
|
298 |
+
kept_units = processed[i]["units"][:-to_remove]
|
299 |
+
new_text = "".join(kept_units)
|
300 |
+
processed[i]["text_content"] = new_text
|
301 |
+
if isinstance(processed[i]["original_content"], str):
|
302 |
+
processed[i]["original_content"] = new_text
|
303 |
+
elif isinstance(processed[i]["original_content"], list):
|
304 |
+
processed[i]["original_content"][1]["text"] = new_text
|
305 |
+
to_remove = 0
|
306 |
+
|
307 |
+
# 2. Truncate system message
|
308 |
+
if to_remove > 0:
|
309 |
+
system_msg = processed[0]
|
310 |
+
if system_msg["unit_count"] <= to_remove:
|
311 |
+
processed[0]["text_content"] = ""
|
312 |
+
to_remove -= system_msg["unit_count"]
|
313 |
+
if isinstance(processed[0]["original_content"], str):
|
314 |
+
processed[0]["original_content"] = ""
|
315 |
+
elif isinstance(processed[0]["original_content"], list):
|
316 |
+
processed[0]["original_content"][1]["text"] = ""
|
317 |
+
else:
|
318 |
+
kept_units = system_msg["units"][:-to_remove]
|
319 |
+
new_text = "".join(kept_units)
|
320 |
+
processed[0]["text_content"] = new_text
|
321 |
+
if isinstance(processed[0]["original_content"], str):
|
322 |
+
processed[0]["original_content"] = new_text
|
323 |
+
elif isinstance(processed[0]["original_content"], list):
|
324 |
+
processed[0]["original_content"][1]["text"] = new_text
|
325 |
+
to_remove = 0
|
326 |
+
|
327 |
+
# 3. Truncate last message
|
328 |
+
if to_remove > 0 and len(processed) > 1:
|
329 |
+
last_msg = processed[-1]
|
330 |
+
if last_msg["unit_count"] > to_remove:
|
331 |
+
kept_units = last_msg["units"][:-to_remove]
|
332 |
+
new_text = "".join(kept_units)
|
333 |
+
last_msg["text_content"] = new_text
|
334 |
+
if isinstance(last_msg["original_content"], str):
|
335 |
+
last_msg["original_content"] = new_text
|
336 |
+
elif isinstance(last_msg["original_content"], list):
|
337 |
+
last_msg["original_content"][1]["text"] = new_text
|
338 |
+
else:
|
339 |
+
last_msg["text_content"] = ""
|
340 |
+
if isinstance(last_msg["original_content"], str):
|
341 |
+
last_msg["original_content"] = ""
|
342 |
+
elif isinstance(last_msg["original_content"], list):
|
343 |
+
last_msg["original_content"][1]["text"] = ""
|
344 |
+
|
345 |
+
result = []
|
346 |
+
for msg in processed:
|
347 |
+
if msg["text_content"]:
|
348 |
+
result.append({
|
349 |
+
"role": msg["role"],
|
350 |
+
"content": msg["original_content"]
|
351 |
+
})
|
352 |
+
|
353 |
+
return result
|
354 |
+
|
355 |
+
def embed_fn(self, text: str) -> list:
|
356 |
+
"""
|
357 |
+
Generate an embedding for the given text using the QianFan API.
|
358 |
+
|
359 |
+
Args:
|
360 |
+
text (str): The input text to be embedded.
|
361 |
+
|
362 |
+
Returns:
|
363 |
+
list: A list of floats representing the embedding.
|
364 |
+
"""
|
365 |
+
client = OpenAI(base_url=self.qianfan_url, api_key=self.qianfan_api_key)
|
366 |
+
response = client.embeddings.create(input=[text], model=self.embedding_model)
|
367 |
+
return response.data[0].embedding
|
368 |
+
|
369 |
+
async def get_ai_search_res(self, query_list: list) -> list:
|
370 |
+
"""
|
371 |
+
Get AI search results for the given queries using the MCPClient.
|
372 |
+
|
373 |
+
Args:
|
374 |
+
query_list (list): List of queries to search for.
|
375 |
+
|
376 |
+
Returns:
|
377 |
+
list: List of search results as strings.
|
378 |
+
"""
|
379 |
+
try:
|
380 |
+
client = MCPClient()
|
381 |
+
await client.connect_to_server(service_url=self.ai_search_service_url)
|
382 |
+
result = []
|
383 |
+
for query in query_list:
|
384 |
+
response = await client.call_tool("AIsearch", {"query": query})
|
385 |
+
result.append(response.content[0].text)
|
386 |
+
finally:
|
387 |
+
await client.cleanup()
|
388 |
+
return result
|
requirements.txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Requires Python 3.10-3.12
|
2 |
+
appbuilder_sdk==1.0.6
|
3 |
+
crawl4ai==0.6.3
|
4 |
+
docx==0.2.4
|
5 |
+
faiss-cpu==1.9.0
|
6 |
+
gradio==5.27.1
|
7 |
+
jieba==0.42.1
|
8 |
+
mcp==1.9.4
|
9 |
+
numpy==2.2.6
|
10 |
+
openai==1.88.0
|
11 |
+
pdfplumber==0.11.7
|
12 |
+
python_docx==1.1.2
|
13 |
+
Requests==2.32.4
|
14 |
+
sse-starlette==2.3.6
|