File size: 37,107 Bytes
3a5faf4 98d3121 3a5faf4 ed56ef4 3a5faf4 ed56ef4 3a5faf4 ed56ef4 3a5faf4 ed56ef4 3a5faf4 ed56ef4 98d3121 3a5faf4 98d3121 3a5faf4 98d3121 3a5faf4 98d3121 3a5faf4 98d3121 3a5faf4 98d3121 3a5faf4 98d3121 3a5faf4 98d3121 3a5faf4 4d5ee59 3a5faf4 ed56ef4 4d5ee59 98d3121 ed56ef4 3a5faf4 4d5ee59 3a5faf4 98d3121 ed56ef4 98d3121 3a5faf4 98d3121 3a5faf4 ed56ef4 98d3121 3a5faf4 ed56ef4 3a5faf4 98d3121 3a5faf4 ed56ef4 3a5faf4 4d5ee59 3a5faf4 4d5ee59 ed56ef4 3a5faf4 ed56ef4 4d5ee59 ed56ef4 3a5faf4 ed56ef4 3a5faf4 ed56ef4 3a5faf4 ed56ef4 3a5faf4 ed56ef4 3a5faf4 98d3121 ed56ef4 98d3121 3a5faf4 4d5ee59 ed56ef4 3a5faf4 ed56ef4 3a5faf4 98d3121 3a5faf4 98d3121 3a5faf4 98d3121 3a5faf4 ed56ef4 3a5faf4 98d3121 ed56ef4 3a5faf4 98d3121 4d5ee59 98d3121 ed56ef4 98d3121 ed56ef4 98d3121 ed56ef4 98d3121 ed56ef4 98d3121 4d5ee59 98d3121 ed56ef4 4d5ee59 ed56ef4 98d3121 ed56ef4 98d3121 ed56ef4 98d3121 ed56ef4 98d3121 ed56ef4 98d3121 ed56ef4 98d3121 ed56ef4 98d3121 3a5faf4 98d3121 4d5ee59 98d3121 ed56ef4 3a5faf4 ed56ef4 3a5faf4 ed56ef4 4d5ee59 3a5faf4 ed56ef4 3a5faf4 ed56ef4 98d3121 ed56ef4 98d3121 3a5faf4 ed56ef4 3a5faf4 ed56ef4 3a5faf4 4d5ee59 ed56ef4 98d3121 4d5ee59 98d3121 4d5ee59 98d3121 4d5ee59 98d3121 ed56ef4 98d3121 ed56ef4 3a5faf4 98d3121 3a5faf4 ed56ef4 3a5faf4 ed56ef4 3a5faf4 ed56ef4 3a5faf4 ed56ef4 3a5faf4 ed56ef4 98d3121 3a5faf4 ed56ef4 3a5faf4 ed56ef4 3a5faf4 ed56ef4 3a5faf4 98d3121 3a5faf4 98d3121 3a5faf4 ed56ef4 3a5faf4 ed56ef4 98d3121 3a5faf4 ed56ef4 3a5faf4 98d3121 3a5faf4 ed56ef4 3a5faf4 ed56ef4 98d3121 3a5faf4 ed56ef4 98d3121 3a5faf4 ed56ef4 3a5faf4 ed56ef4 4d5ee59 3a5faf4 ed56ef4 3a5faf4 ed56ef4 3a5faf4 ed56ef4 3a5faf4 4d5ee59 3a5faf4 98d3121 3a5faf4 98d3121 3a5faf4 4d5ee59 3a5faf4 ed56ef4 3a5faf4 ed56ef4 3a5faf4 ed56ef4 3a5faf4 98d3121 3a5faf4 98d3121 3a5faf4 98d3121 3a5faf4 98d3121 3a5faf4 ed56ef4 3a5faf4 98d3121 3a5faf4 ed56ef4 3a5faf4 ed56ef4 3a5faf4 98d3121 3a5faf4 4d5ee59 3a5faf4 4d5ee59 3a5faf4 ed56ef4 3a5faf4 ed56ef4 3a5faf4 98d3121 ed56ef4 98d3121 3a5faf4 ed56ef4 3a5faf4 98d3121 3a5faf4 ed56ef4 3a5faf4 ed56ef4 3a5faf4 ed56ef4 3a5faf4 4d5ee59 3a5faf4 ed56ef4 3a5faf4 ed56ef4 98d3121 3a5faf4 ed56ef4 3a5faf4 ed56ef4 3a5faf4 ed56ef4 3a5faf4 ed56ef4 3a5faf4 ed56ef4 3a5faf4 4d5ee59 3a5faf4 ed56ef4 3a5faf4 ed56ef4 4d5ee59 3a5faf4 ed56ef4 3a5faf4 98d3121 3a5faf4 ed56ef4 3a5faf4 ed56ef4 3a5faf4 ed56ef4 98d3121 3a5faf4 4d5ee59 3a5faf4 ed56ef4 98d3121 3a5faf4 ed56ef4 3a5faf4 4d5ee59 3a5faf4 4d5ee59 3a5faf4 ed56ef4 3a5faf4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 |
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script provides a Gradio interface for interacting with a chatbot based on Retrieval-Augmented Generation.
"""
import argparse
import base64
import copy
import hashlib
import json
import logging
import os
import textwrap
from argparse import ArgumentParser
from collections import namedtuple
from datetime import datetime
from functools import partial
import faiss
import gradio as gr
import numpy as np
from bot_requests import BotClient
os.environ["NO_PROXY"] = "localhost,127.0.0.1" # Disable proxy
logging.root.setLevel(logging.INFO)
FILE_URL_DEFAULT = "data/coffee.txt"
RELEVANT_PASSAGE_DEFAULT = textwrap.dedent(
"""\
1675年时,英格兰就有3000多家咖啡馆;启蒙运动时期,咖啡馆成为民众深入讨论宗教和政治的聚集地,
1670年代的英国国王查理二世就曾试图取缔咖啡馆。这一时期的英国人认为咖啡具有药用价值,
甚至名医也会推荐将咖啡用于医疗。"""
)
QUERY_REWRITE_PROMPT = textwrap.dedent(
"""\
【当前时间】
{TIMESTAMP}
【对话内容】
{CONVERSATION}
你的任务是根据上面user与assistant的对话内容,理解user意图,改写user的最后一轮对话,以便更高效地从知识库查找相关知识。具体的改写要求如下:
1. 如果user的问题包括几个小问题,请将它们分成多个单独的问题。
2. 如果user的问题涉及到之前对话的信息,请将这些信息融入问题中,形成一个不需要上下文就可以理解的完整问题。
3. 如果user的问题是在比较或关联多个事物时,先将其拆分为单个事物的问题,例如‘A与B比起来怎么样’,拆分为:‘A怎么样’以及‘B怎么样’。
4. 如果user的问题中描述事物的限定词有多个,请将多个限定词拆分成单个限定词。
5. 如果user的问题具有**时效性(需要包含当前时间信息,才能得到正确的回复)**的时候,需要将当前时间信息添加到改写的query中;否则不加入当前时间信息。
6. 只在**确有必要**的情况下改写,不需要改写时query输出[]。输出不超过 5 个改写问题,不要为了凑满数量而输出冗余问题。
【输出格式】只输出 JSON ,不要给出多余内容
```json
{{
"query": ["改写问题1", "改写问题2"...]
}}```
"""
)
ANSWER_PROMPT = textwrap.dedent(
"""\
你是阅读理解问答专家。
【文档知识】
{DOC_CONTENT}
你的任务是根据对话内容,理解用户需求,参考文档知识回答用户问题,知识参考详细原则如下:
- 对于同一信息点,如文档知识与模型通用知识均可支撑,应优先以文档知识为主,并对信息进行验证和综合。
- 如果文档知识不足或信息冲突,必须指出“根据资料无法确定”或“不同资料存在矛盾”,不得引入文档知识与通识之外的主观推测。
同时,回答问题需要综合考虑规则要求中的各项内容,详细要求如下:
【规则要求】
* 回答问题时,应优先参考与问题紧密相关的文档知识,不要在答案中引入任何与问题无关的文档内容。
* 回答中不可以让用户知道你查询了相关文档。
* 回复答案不要出现'根据文档知识','根据当前时间'等表述。
* 论述突出重点内容,以分点条理清晰的结构化格式输出。
【当前时间】
{TIMESTAMP}
【对话内容】
{CONVERSATION}
直接输出回复内容即可。
"""
)
QUERY_DEFAULT = "1675 年时,英格兰有多少家咖啡馆?"
def get_args() -> argparse.Namespace:
"""
Parse and return command line arguments for the ERNIE models chat demo.
Configures server settings, model endpoint, and document processing parameters.
Returns:
argparse.Namespace: Parsed command line arguments containing all the above settings.
"""
parser = ArgumentParser(description="ERNIE models web chat demo.")
parser.add_argument(
"--server-port", type=int, default=7860, help="Demo server port."
)
parser.add_argument(
"--server-name", type=str, default="0.0.0.0", help="Demo server name."
)
parser.add_argument(
"--max_char",
type=int,
default=20000,
help="Maximum character limit for messages.",
)
parser.add_argument(
"--max_retry_num", type=int, default=3, help="Maximum retry number for request."
)
parser.add_argument(
"--model_map",
type=str,
default='{"ernie-4.5-turbo-128k-preview": "https://qianfan.baidubce.com/v2"}',
help="""JSON string defining model name to endpoint mappings.
Required Format:
{"ERNIE-4.5": "http://localhost:port/v1"}
Note:
- Endpoints must be valid HTTP URL
- Specify ONE model endpoint in JSON format.
- Prefix determines model capabilities:
* ERNIE-4.5: Text-only model
""",
)
parser.add_argument(
"--embedding_service_url",
type=str,
default="https://qianfan.baidubce.com/v2",
help="Embedding service url.",
)
parser.add_argument(
"--qianfan_api_key",
type=str,
default=os.environ.get("API_KEY"),
help="Qianfan API key.",
)
parser.add_argument(
"--embedding_model",
type=str,
default="embedding-v1",
help="Embedding model name.",
)
parser.add_argument(
"--embedding_dim",
type=int,
default=384,
help="Dimension of the embedding vector.",
)
parser.add_argument(
"--chunk_size",
type=int,
default=512,
help="Chunk size for splitting long documents.",
)
parser.add_argument(
"--top_k", type=int, default=3, help="Top k results to retrieve."
)
parser.add_argument(
"--faiss_index_path",
type=str,
default="data/faiss_index",
help="Faiss index path.",
)
parser.add_argument(
"--text_db_path",
type=str,
default="data/text_db.jsonl",
help="Text database path.",
)
parser.add_argument(
"--concurrency_limit", type=int, default=10, help="Default concurrency limit."
)
parser.add_argument(
"--max_queue_size", type=int, default=50, help="Maximum queue size for request."
)
args = parser.parse_args()
try:
args.model_map = json.loads(args.model_map)
# Validation: Check at least one model exists
if len(args.model_map) < 1:
raise ValueError("model_map must contain at least one model configuration")
except json.JSONDecodeError as e:
raise ValueError("Invalid JSON format for --model_map") from e
return args
class FaissTextDatabase:
"""
A vector database for text retrieval using FAISS.
Provides efficient similarity search and document management capabilities.
"""
def __init__(self, args, bot_client: BotClient):
"""
Initialize the FaissTextDatabase.
Args:
args: arguments for initialization
bot_client: instance of BotClient
embedding_dim: dimension of the embedding vector
"""
self.logger = logging.getLogger(__name__)
self.bot_client = bot_client
self.embedding_dim = getattr(args, "embedding_dim", 384)
self.top_k = getattr(args, "top_k", 3)
self.context_size = getattr(args, "context_size", 2)
self.faiss_index_path = getattr(args, "faiss_index_path", "data/faiss_index")
self.text_db_path = getattr(args, "text_db_path", "data/text_db.jsonl")
# If faiss_index_path exists, load it and text_db_path
if os.path.exists(self.faiss_index_path) and os.path.exists(self.text_db_path):
self.index = faiss.read_index(self.faiss_index_path)
with open(self.text_db_path, "r", encoding="utf-8") as f:
self.text_db = json.load(f)
else:
self.index = faiss.IndexFlatIP(self.embedding_dim)
self.text_db = {
"file_md5s": [],
"chunks": [],
} # Save file_md5s to avoid duplicates # Save chunks
def calculate_md5(self, file_path: str) -> str:
"""
Calculate the MD5 hash of a file
Args:
file_path: the path of the source file
Returns:
str: the MD5 hash
"""
with open(file_path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
def is_file_processed(self, file_path: str) -> bool:
"""
Check if the file has been processed before
Args:
file_path: the path of the source file
Returns:
bool: whether the file has been processed
"""
file_md5 = self.calculate_md5(file_path)
return file_md5 in self.text_db["file_md5s"]
def add_embeddings(
self,
file_path: str,
segments: list[str],
progress_bar: gr.Progress = None,
save_file: bool = False,
) -> bool:
"""
Stores document embeddings in FAISS database after checking for duplicates.
Generates embeddings for each text segment, updates the FAISS index and metadata database,
and persists changes to disk. Includes optional progress tracking for Gradio interfaces.
Args:
file_path: the path of the source file
segments: the list of segments
progress_bar: the progress bar object
Returns:
bool: whether the operation was successful
"""
file_md5 = self.calculate_md5(file_path)
if file_md5 in self.text_db["file_md5s"]:
self.logger.info(f"File already processed: {file_path} (MD5: {file_md5})")
return False
# Generate embeddings
vectors = []
file_name = os.path.basename(file_path)
file_txt = "".join(file_name.split(".")[:-1])[:30]
for i, segment in enumerate(segments):
vectors.append(self.bot_client.embed_fn(file_txt + "\n" + segment))
if progress_bar is not None:
progress_bar((i + 1) / len(segments), desc=file_name + " Processing...")
vectors = np.array(vectors)
self.index.add(vectors.astype("float32"))
start_id = len(self.text_db["chunks"])
for i, text in enumerate(segments):
self.text_db["chunks"].append(
{
"file_md5": file_md5,
"file_name": file_name,
"file_txt": file_txt,
"text": text,
"vector_id": start_id + i,
}
)
self.text_db["file_md5s"].append(file_md5)
if save_file:
self.save()
return True
def search_with_context(self, query_list: list) -> str:
"""
Finds the most relevant text chunks for multiple queries and includes surrounding context.
Uses FAISS to find the closest matching embeddings, then retrieves adjacent chunks
from the same source document to provide better context understanding.
Args:
query_list: list of input query strings
Returns:
str: the concatenated output string
"""
# Step 1: Retrieve top_k results for each query and collect all indices
all_indices = []
for query in query_list:
query_vector = np.array([self.bot_client.embed_fn(query)]).astype("float32")
_, indices = self.index.search(query_vector, self.top_k)
all_indices.extend(indices[0].tolist())
# Step 2: Remove duplicate indices
unique_indices = sorted(set(all_indices))
self.logger.info(f"Retrieved indices: {all_indices}")
self.logger.info(f"Unique indices after deduplication: {unique_indices}")
# Step 3: Expand each index with context (within same file boundaries)
expanded_indices = set()
file_boundaries = {} # {file_md5: (start_idx, end_idx)}
for target_idx in unique_indices:
target_chunk = self.text_db["chunks"][target_idx]
target_file_md5 = target_chunk["file_md5"]
if target_file_md5 not in file_boundaries:
file_start = target_idx
while (
file_start > 0
and self.text_db["chunks"][file_start - 1]["file_md5"]
== target_file_md5
):
file_start -= 1
file_end = target_idx
while (
file_end < len(self.text_db["chunks"]) - 1
and self.text_db["chunks"][file_end + 1]["file_md5"]
== target_file_md5
):
file_end += 1
else:
file_start, file_end = file_boundaries[target_file_md5]
# Calculate context range within file boundaries
start = max(file_start, target_idx - self.context_size)
end = min(file_end, target_idx + self.context_size)
for pos in range(start, end + 1):
expanded_indices.add(pos)
# Step 4: Sort and merge continuous chunks
sorted_indices = sorted(expanded_indices)
groups = []
current_group = [sorted_indices[0]]
for i in range(1, len(sorted_indices)):
if (
sorted_indices[i] == sorted_indices[i - 1] + 1
and self.text_db["chunks"][sorted_indices[i]]["file_md5"]
== self.text_db["chunks"][sorted_indices[i - 1]]["file_md5"]
):
current_group.append(sorted_indices[i])
else:
groups.append(current_group)
current_group = [sorted_indices[i]]
groups.append(current_group)
# Step 5: Create merged text for each group
result = ""
for idx, group in enumerate(groups):
result += "\n段落{idx}:\n{title}\n".format(
idx=idx + 1, title=self.text_db["chunks"][group[0]]["file_txt"]
)
for idx in group:
result += self.text_db["chunks"][idx]["text"] + "\n"
self.logger.info(f"Merged chunk range: {group[0]}-{group[-1]}")
return result
def save(self) -> None:
"""Save the database to disk."""
faiss.write_index(self.index, self.faiss_index_path)
with open(self.text_db_path, "w", encoding="utf-8") as f:
json.dump(self.text_db, f, ensure_ascii=False, indent=2)
class GradioEvents:
"""
Manages event handling and UI interactions for Gradio applications.
Provides methods to process user inputs, trigger callbacks, and update interface components.
"""
@staticmethod
def get_history_conversation(task_history: list) -> tuple:
"""
Converts task history into conversation format for model processing.
Transforms query-response pairs into structured message history and plain text.
Args:
task_history (list): List of tuples containing queries and responses.
Returns:
tuple: Tuple containing two elements:
- conversation (list): List of dictionaries representing the conversation history.
- conversation_str (str): String representation of the conversation history.
"""
conversation = []
conversation_str = ""
for query_h, response_h in task_history:
conversation.append({"role": "user", "content": query_h})
conversation.append({"role": "assistant", "content": response_h})
conversation_str += f"user:\n{query_h}\n assistant:\n{response_h}\n "
return conversation, conversation_str
@staticmethod
def chat_stream(
query: str,
task_history: list,
model: str,
faiss_db: FaissTextDatabase,
bot_client: BotClient,
) -> dict:
"""
Streams chatbot responses by processing queries with context from history and FAISS database.
Integrates language model generation with knowledge retrieval to produce dynamic responses.
Yields response events in real-time for interactive conversation experiences.
Args:
query (str): The query string.
task_history (list): The task history record list.
model (Model): The model used to generate responses.
bot_client (BotClient): The chatbot client object.
faiss_db (FaissTextDatabase): The FAISS database object.
Yields:
dict: A dictionary containing the event type and its corresponding content.
"""
conversation, conversation_str = GradioEvents.get_history_conversation(
task_history
)
conversation_str += f"user:\n{query}\n"
search_info_message = QUERY_REWRITE_PROMPT.format(
TIMESTAMP=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
CONVERSATION=conversation_str,
)
search_conversation = [{"role": "user", "content": search_info_message}]
search_info_result = GradioEvents.get_sub_query(
search_conversation, model, bot_client
)
if search_info_result is None:
search_info_result = {"query": [query]}
if search_info_result.get("query", []):
relevant_passages = faiss_db.search_with_context(
search_info_result["query"]
)
yield {"type": "relevant_passage", "content": relevant_passages}
query = ANSWER_PROMPT.format(
DOC_CONTENT=relevant_passages,
TIMESTAMP=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
CONVERSATION=conversation_str,
)
conversation.append({"role": "user", "content": query})
try:
req_data = {"messages": conversation}
for chunk in bot_client.process_stream(model, req_data):
if "error" in chunk:
raise Exception(chunk["error"])
message = chunk.get("choices", [{}])[0].get("delta", {})
content = message.get("content", "")
if content:
yield {"type": "answer", "content": content}
except Exception as e:
raise gr.Error("Exception: " + repr(e))
@staticmethod
def predict_stream(
query: str,
chatbot: list,
task_history: list,
model: str,
faiss_db: FaissTextDatabase,
bot_client: BotClient,
) -> tuple:
"""
Generates streaming responses by combining model predictions with knowledge retrieval.
Processes user queries using conversation history and FAISS database context,
yielding updated chat messages and relevant passages in real-time.
Args:
query (str): The content of the user's input query.
chatbot (list): The chatbot's historical message list.
task_history (list): The task history record list.
model (Model): The model used to generate responses.
bot_client (object): The chatbot client object.
faiss_db (FaissTextDatabase): The FAISS database instance.
Yields:
tuple: A tuple containing the updated chatbot's message list and the relevant passage.
"""
query = query if query else QUERY_DEFAULT
logging.info(f"User: {query}")
chatbot.append({"role": "user", "content": query})
# First yield the chatbot with user message
yield chatbot, None
new_texts = GradioEvents.chat_stream(
query,
task_history,
model,
faiss_db,
bot_client,
)
response = ""
current_relevant_passage = None
for new_text in new_texts:
if not isinstance(new_text, dict):
continue
if new_text.get("type") == "embedding":
current_relevant_passage = new_text["content"]
yield chatbot, current_relevant_passage
continue
elif new_text.get("type") == "relevant_passage":
current_relevant_passage = new_text["content"]
yield chatbot, current_relevant_passage
continue
elif new_text.get("type") == "answer":
response += new_text["content"]
# Remove previous message if exists
if chatbot[-1].get("role") == "assistant":
chatbot.pop(-1)
if response:
chatbot.append({"role": "assistant", "content": response})
yield chatbot, current_relevant_passage
logging.info(f"History: {task_history}")
task_history.append((query, response))
logging.info(f"ERNIE models: {response}")
@staticmethod
def regenerate(
chatbot: list,
task_history: list,
model: str,
faiss_db: FaissTextDatabase,
bot_client: BotClient,
) -> tuple:
"""
Regenerate the chatbot's response based on the latest user query
Args:
chatbot (list): Chat history list
task_history (list): Task history
model (str): Model name to use
bot_client (BotClient): Bot request client instance
faiss_db (FaissTextDatabase): Faiss database instance
Yields:
tuple: Updated chatbot and relevant_passage
"""
if not task_history:
yield chatbot, None
return
# Pop the last user query and bot response from task_history
item = task_history.pop(-1)
while len(chatbot) != 0 and chatbot[-1].get("role") == "assistant":
chatbot.pop(-1)
chatbot.pop(-1)
yield from GradioEvents.predict_stream(
item[0],
chatbot,
task_history,
model,
faiss_db,
bot_client,
)
@staticmethod
def reset_user_input() -> gr.update:
"""
Reset user input box content.
Returns:
gr.update: An update object representing the cleared value
"""
return gr.update(value="")
@staticmethod
def reset_state() -> namedtuple:
"""
Reset chat state and clear all history.
Returns:
tuple: A named tuple containing the updated values for chatbot, task_history, file_btn, and relevant_passage
"""
GradioEvents.gc()
reset_result = namedtuple(
"reset_result", ["chatbot", "task_history", "file_btn", "relevant_passage"]
)
return reset_result(
[], # clear chatbot
[], # clear task_history
gr.update(value=None), # clear file_btn
gr.update(value=None), # reset relevant_passage
)
@staticmethod
def gc():
"""
Force garbage collection to free memory.
"""
import gc
gc.collect()
@staticmethod
def get_image_url(image_path: str) -> str:
"""
Encode image file to Base64 format and generate data URL.
Reads an image file from disk, encodes it as Base64, and formats it
as a data URL that can be used directly in HTML or API requests.
Args:
image_path (str): Path to the image file. Must be a valid file path.
Returns:
str: Data URL string in format "data:image/{ext};base64,{encoded_data}"
"""
base64_image = ""
extension = image_path.split(".")[-1]
with open(image_path, "rb") as image_file:
base64_image = base64.b64encode(image_file.read()).decode("utf-8")
url = f"data:image/{extension};base64,{base64_image}"
return url
@staticmethod
def get_sub_query(
conversation: list, model_name: str, bot_client: BotClient
) -> dict:
"""
Enhances user queries by generating alternative phrasings using language models.
Creates semantically similar variations of the original query to improve retrieval accuracy.
Returns structured dictionary containing both original and rephrased queries.
Args:
conversation (list): The conversation history.
model_name (str): The name of the model to use for rephrasing.
bot_client (BotClient): The bot client instance.
Returns:
dict: The rephrased query.
"""
req_data = {"messages": conversation}
try:
response = bot_client.process(model_name, req_data)
search_info_res = response["choices"][0]["message"]["content"]
start = search_info_res.find("{")
end = search_info_res.rfind("}") + 1
if start >= 0 and end > start:
search_info_res = search_info_res[start:end]
search_info_res = json.loads(search_info_res)
if search_info_res.get("sub_query_list", []):
unique_list = list(set(search_info_res["sub_query_list"]))
search_info_res["sub_query_list"] = unique_list
return search_info_res
except Exception:
logging.error("Error: Model output is not a valid JSON")
return None
@staticmethod
def split_oversized_line(line: str, chunk_size: int) -> tuple:
"""
Split a line into two parts based on punctuation marks or whitespace while preserving
natural language boundaries and maintaining the original content structure.
Args:
line (str): The line to split.
chunk_size (int): The maximum length of each chunk.
Returns:
tuple: Two strings, the first part of the original line and the rest of the line.
"""
PUNCTUATIONS = {
".",
"。",
"!",
"!",
"?",
"?",
",",
",",
";",
";",
":",
":",
}
if len(line) <= chunk_size:
return line, ""
# Search from chunk_size position backwards
split_pos = chunk_size
for i in range(chunk_size, 0, -1):
if line[i] in PUNCTUATIONS:
split_pos = i + 1 # Include punctuation
break
# Fallback to whitespace if no punctuation found
if split_pos == chunk_size:
split_pos = line.rfind(" ", 0, chunk_size)
if split_pos == -1:
split_pos = chunk_size # Hard split
return line[:split_pos], line[split_pos:]
@staticmethod
def split_text_into_chunks(file_url: str, chunk_size: int) -> list:
"""
Split file text into chunks of a specified size while respecting natural language boundaries
and avoiding mid-word splits whenever possible.
Args:
file_url (str): The file URL.
chunk_size (int): The maximum length of each chunk.
Returns:
list: A list of strings, where each element represents a chunk of the original text.
"""
with open(file_url, "r", encoding="utf-8") as f:
text = f.read()
if not text:
logging.error("Error: File is empty")
return []
lines = [line.strip() for line in text.split("\n") if line.strip()]
chunks = []
current_chunk = []
current_length = 0
for line in lines:
# If adding this line would exceed chunk size (and we have content)
if current_length + len(line) > chunk_size and current_chunk:
chunks.append("\n".join(current_chunk))
current_chunk = []
current_length = 0
# Process oversized lines first
while len(line) > chunk_size:
head, line = GradioEvents.split_oversized_line(line, chunk_size)
chunks.append(head)
# Add remaining line content
if line:
current_chunk.append(line)
current_length += len(line) + 1
if current_chunk:
chunks.append("\n".join(current_chunk))
return chunks
@staticmethod
def file_upload(
files_url: list,
chunk_size: int,
faiss_db: FaissTextDatabase,
progress_bar: gr.Progress = gr.Progress(),
) -> str:
"""
Uploads and processes multiple files by splitting them into semantically meaningful chunks,
then indexes them in the FAISS database with progress tracking.
Args:
files_url (list): List of file URLs.
chunk_size (int): Maximum chunk size.
faiss_db (FaissTextDatabase): FAISS database instance.
progress_bar (gr.Progress): Progress bar instance.
Returns:
str: Message indicating successful completion.
"""
if not files_url:
return
yield gr.update(visible=True)
for file_url in files_url:
if not GradioEvents.save_file_to_db(
file_url, chunk_size, faiss_db, progress_bar
):
file_name = os.path.basename(file_url)
gr.Info(f"{file_name} already processed.")
yield gr.update(visible=False)
@staticmethod
def save_file_to_db(
file_url: str,
chunk_size: int,
faiss_db: FaissTextDatabase,
progress_bar: gr.Progress = None,
save_file: bool = False,
):
"""
Processes and indexes document content into FAISS database with semantic-aware chunking.
Handles file validation, text segmentation, embedding generation and storage operations.
Args:
file_url (str): File URL.
chunk_size (int): Chunk size.
faiss_db (FaissTextDatabase): FAISS database instance.
progress_bar (gr.Progress): Progress bar instance.
Returns:
bool: True if the file was saved successfully, otherwise False.
"""
if not os.path.exists(file_url):
logging.error(f"File not found: {file_url}")
return False
file_name = os.path.basename(file_url)
if not faiss_db.is_file_processed(file_url):
logging.info(f"{file_url} not processed yet, processing now...")
try:
segments = GradioEvents.split_text_into_chunks(file_url, chunk_size)
faiss_db.add_embeddings(file_url, segments, progress_bar, save_file)
logging.info(f"{file_url} processed successfully.")
return True
except Exception as e:
logging.error(f"Error processing {file_url}: {e!s}")
gr.Error(f"Error processing file: {file_name}")
raise
else:
logging.info(f"{file_url} already processed.")
return False
def launch_demo(
args: argparse.Namespace,
bot_client: BotClient,
faiss_db_template: FaissTextDatabase,
):
"""
Launch demo program
Args:
args (argparse.Namespace): argparse Namespace object containing parsed command line arguments
bot_client (BotClient): Bot client instance
faiss_db (FaissTextDatabase): FAISS database instance
"""
css = """
/* Hide original Chinese text */
#file-upload .wrap {
font-size: 0 !important;
position: relative;
display: flex;
flex-direction: column;
align-items: center;
justify-content: center;
}
/* Insert English prompt text below the SVG icon */
#file-upload .wrap::after {
content: "Drag and drop files here or click to upload";
font-size: 18px;
color: #555;
margin-top: 8px;
white-space: nowrap;
}
"""
with gr.Blocks(css=css) as demo:
model_name = gr.State(next(iter(args.model_map.keys())))
faiss_db = gr.State(copy.deepcopy(faiss_db_template))
logo_url = GradioEvents.get_image_url("assets/logo.png")
gr.Markdown(
f"""\
<p align="center"><img src="{logo_url}" \
style="height: 60px"/><p>"""
)
gr.Markdown(
"""\
<center><font size=3>This demo is based on ERNIE models. \
(本演示基于文心大模型实现。)</center>"""
)
gr.Markdown(
"""\
<center><font size=3> <a href="https://ernie.baidu.com/">ERNIE Bot</a> | \
<a href="https://github.com/PaddlePaddle/ERNIE">GitHub</a> | \
<a href="https://huggingface.co/baidu">Hugging Face</a> | \
<a href="https://aistudio.baidu.com/modelsoverview">BAIDU AI Studio</a> | \
<a href="https://yiyan.baidu.com/blog/publication/">Technical Report</a></center>"""
)
chatbot = gr.Chatbot(label="ERNIE", type="messages")
with gr.Row(equal_height=True):
file_btn = gr.File(
label="Knowledge Base Upload (System default will be used if none provided. Accepted formats: TXT, MD)",
height="150px",
file_types=[".txt", ".md"],
elem_id="file-upload",
file_count="multiple",
)
relevant_passage = gr.Textbox(
label="Relevant Passage",
lines=5,
max_lines=5,
placeholder=RELEVANT_PASSAGE_DEFAULT,
interactive=False,
)
with gr.Row():
progress_bar = gr.Textbox(label="Progress", visible=False)
query = gr.Textbox(label="Query", elem_id="text_input", value=QUERY_DEFAULT)
with gr.Row():
empty_btn = gr.Button("🧹 Clear History(清除历史)")
submit_btn = gr.Button("🚀 Submit(发送)", elem_id="submit-button")
regen_btn = gr.Button("🤔️ Regenerate(重试)")
task_history = gr.State([])
predict_with_clients = partial(
GradioEvents.predict_stream, bot_client=bot_client
)
regenerate_with_clients = partial(
GradioEvents.regenerate, bot_client=bot_client
)
file_upload_with_clients = partial(
GradioEvents.file_upload,
)
chunk_size = gr.State(args.chunk_size)
file_btn.change(
fn=file_upload_with_clients,
inputs=[file_btn, chunk_size, faiss_db],
outputs=[progress_bar],
)
query.submit(
predict_with_clients,
inputs=[query, chatbot, task_history, model_name, faiss_db],
outputs=[chatbot, relevant_passage],
show_progress=True,
)
query.submit(GradioEvents.reset_user_input, [], [query])
submit_btn.click(
predict_with_clients,
inputs=[query, chatbot, task_history, model_name, faiss_db],
outputs=[chatbot, relevant_passage],
show_progress=True,
)
submit_btn.click(GradioEvents.reset_user_input, [], [query])
empty_btn.click(
GradioEvents.reset_state,
outputs=[chatbot, task_history, file_btn, relevant_passage],
show_progress=True,
)
regen_btn.click(
regenerate_with_clients,
inputs=[chatbot, task_history, model_name, faiss_db],
outputs=[chatbot, relevant_passage],
show_progress=True,
)
demo.queue(
default_concurrency_limit=args.concurrency_limit, max_size=args.max_queue_size
)
demo.launch(server_port=args.server_port, server_name=args.server_name)
def main():
"""Main function that runs when this script is executed."""
args = get_args()
bot_client = BotClient(args)
faiss_db = FaissTextDatabase(args, bot_client)
# Run file upload function to save default knowledge base.
GradioEvents.save_file_to_db(
FILE_URL_DEFAULT, args.chunk_size, faiss_db, save_file=True
)
launch_demo(args, bot_client, faiss_db)
if __name__ == "__main__":
main()
|