Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -80,7 +80,8 @@ def search_faiss_index(query_embedding, index, top_k=5):
|
|
80 |
distances, indices = index.search(query_embedding, top_k)
|
81 |
return indices[0], distances[0]
|
82 |
|
83 |
-
|
|
|
84 |
def main():
|
85 |
st.title("Enhanced RAG Model with FAISS Indexing")
|
86 |
|
@@ -107,45 +108,66 @@ def main():
|
|
107 |
# Input Prompt
|
108 |
prompt = st.text_input("Enter your query:")
|
109 |
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
text_lines = extract_text_from_pdf(pdf_file)
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
st.write(f"**Detected Language:** {lang}")
|
117 |
-
|
118 |
# Chunk the text
|
119 |
-
chunks = split_text_into_chunks(text_lines)
|
120 |
|
121 |
# Encode chunks
|
122 |
-
chunk_embeddings = embedder.encode(chunks, convert_to_tensor=False)
|
123 |
|
124 |
# Build FAISS index
|
125 |
-
|
126 |
-
|
127 |
-
# Embed the query
|
128 |
-
query_embedding = embedder.encode([prompt], convert_to_tensor=False)
|
129 |
|
130 |
-
|
131 |
-
top_k_indices, _ = search_faiss_index(np.array(query_embedding), index, top_k=5)
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
# Combine the context
|
137 |
-
context = "\n".join(relevant_chunks)
|
138 |
-
|
139 |
-
# Format the system prompt
|
140 |
formatted_prompt = DEFAULT_SYSTEM_PROMPTS[query_translation].format(question=prompt)
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
|
150 |
if __name__ == "__main__":
|
151 |
main()
|
|
|
80 |
distances, indices = index.search(query_embedding, top_k)
|
81 |
return indices[0], distances[0]
|
82 |
|
83 |
+
|
84 |
+
|
85 |
def main():
|
86 |
st.title("Enhanced RAG Model with FAISS Indexing")
|
87 |
|
|
|
108 |
# Input Prompt
|
109 |
prompt = st.text_input("Enter your query:")
|
110 |
|
111 |
+
# State to hold intermediate results
|
112 |
+
if 'embeddings' not in st.session_state:
|
113 |
+
st.session_state.embeddings = None
|
114 |
+
if 'chunks' not in st.session_state:
|
115 |
+
st.session_state.chunks = []
|
116 |
+
if 'faiss_index' not in st.session_state:
|
117 |
+
st.session_state.faiss_index = None
|
118 |
+
if 'relevant_chunks' not in st.session_state:
|
119 |
+
st.session_state.relevant_chunks = []
|
120 |
+
if 'translated_queries' not in st.session_state:
|
121 |
+
st.session_state.translated_queries = []
|
122 |
+
|
123 |
+
# Button 1: Embed PDF
|
124 |
+
if st.button("1. Embed PDF") and pdf_file:
|
125 |
text_lines = extract_text_from_pdf(pdf_file)
|
126 |
+
st.session_state.lang = detect_language(" ".join(text_lines))
|
127 |
+
st.write(f"**Detected Language:** {st.session_state.lang}")
|
128 |
+
|
|
|
|
|
129 |
# Chunk the text
|
130 |
+
st.session_state.chunks = split_text_into_chunks(text_lines)
|
131 |
|
132 |
# Encode chunks
|
133 |
+
chunk_embeddings = embedder.encode(st.session_state.chunks, convert_to_tensor=False)
|
134 |
|
135 |
# Build FAISS index
|
136 |
+
st.session_state.faiss_index = build_faiss_index(np.array(chunk_embeddings))
|
|
|
|
|
|
|
137 |
|
138 |
+
st.success("PDF Embedded Successfully")
|
|
|
139 |
|
140 |
+
# Button 2: Generate Translated Queries
|
141 |
+
if st.button("2. Query Translation") and prompt:
|
|
|
|
|
|
|
|
|
|
|
142 |
formatted_prompt = DEFAULT_SYSTEM_PROMPTS[query_translation].format(question=prompt)
|
143 |
+
response = query_huggingface_model(formatted_prompt, max_new_tokens, temperature, top_k)
|
144 |
+
st.session_state.translated_queries = response.split("\n")
|
145 |
+
st.write("**Generated Queries:**")
|
146 |
+
st.write(st.session_state.translated_queries)
|
147 |
+
|
148 |
+
# Button 3: Retrieve Document Details
|
149 |
+
if st.button("3. Retrieve Documents") and st.session_state.translated_queries:
|
150 |
+
st.session_state.relevant_chunks = []
|
151 |
+
for query in st.session_state.translated_queries:
|
152 |
+
query_embedding = embedder.encode([query], convert_to_tensor=False)
|
153 |
+
top_k_indices, _ = search_faiss_index(np.array(query_embedding), st.session_state.faiss_index, top_k=5)
|
154 |
+
relevant_chunks = [st.session_state.chunks[i] for i in top_k_indices]
|
155 |
+
st.session_state.relevant_chunks.append(relevant_chunks)
|
156 |
+
|
157 |
+
st.write("**Retrieved Documents (for each query):**")
|
158 |
+
for i, relevant_chunks in enumerate(st.session_state.relevant_chunks):
|
159 |
+
st.write(f"**Query {i + 1}: {st.session_state.translated_queries[i]}**")
|
160 |
+
for chunk in relevant_chunks:
|
161 |
+
st.write(f"{chunk[:100]}...")
|
162 |
+
|
163 |
+
# Button 4: Generate Final Response
|
164 |
+
if st.button("4. Final Response") and st.session_state.relevant_chunks:
|
165 |
+
context = "\n".join([chunk for sublist in st.session_state.relevant_chunks for chunk in sublist])
|
166 |
+
llm_input = f"{DEFAULT_SYSTEM_PROMPTS[query_translation].format(question=prompt)}\n\nContext: {context}\n\nAnswer this question: {prompt}"
|
167 |
+
final_response = query_huggingface_model(llm_input, max_new_tokens, temperature, top_k)
|
168 |
+
|
169 |
+
st.subheader("Final Response:")
|
170 |
+
st.write(final_response)
|
171 |
|
172 |
if __name__ == "__main__":
|
173 |
main()
|