File size: 10,032 Bytes
ce96e8f
c25ce6b
 
 
e424603
e39d0f6
ce96e8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94260c3
ce96e8f
 
 
e424603
 
 
 
 
 
94260c3
 
 
 
e424603
 
 
 
 
 
 
 
 
 
94260c3
 
c25ce6b
c065ba1
c25ce6b
 
 
 
 
94260c3
 
c25ce6b
 
c065ba1
 
 
c25ce6b
 
 
 
 
 
 
c065ba1
e39d0f6
 
 
 
 
94260c3
c065ba1
 
 
 
 
 
 
 
 
 
94260c3
c065ba1
 
 
 
 
 
e424603
 
 
 
 
 
 
c065ba1
 
 
 
 
 
 
 
 
e424603
 
 
c065ba1
e424603
 
 
 
 
c065ba1
 
 
 
 
 
 
 
 
 
 
 
 
e424603
 
c065ba1
e424603
c065ba1
 
 
 
 
e424603
 
ce96e8f
 
e424603
ce96e8f
 
e424603
 
 
ce96e8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c065ba1
ce96e8f
 
 
 
 
 
 
 
 
 
c065ba1
ce96e8f
 
94260c3
 
 
 
 
 
 
ce96e8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e424603
ce96e8f
 
e424603
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c065ba1
e424603
 
c065ba1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94260c3
c065ba1
 
 
 
 
 
 
ce96e8f
 
 
 
94260c3
e424603
 
 
 
 
 
 
 
 
 
 
c065ba1
ce96e8f
 
 
 
e424603
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import gradio as gr
from utils import (extract_wiki_id, get_wiki_details,
                   init_llm_client, split_content_into_sections,
                   get_translate_prompt)
import json
import json_repair

# Define language options for translation
LANGUAGES = {
    "Arabic": "ar",
    "English": "en",
    "Spanish": "es",
    "French": "fr",
    "German": "de",
    "Italian": "it",
    "Portuguese": "pt",
    "Russian": "ru",
    "Japanese": "ja",
    "Chinese": "zh",
    "Hindi": "hi",
    "Korean": "ko"
}

def extract_wikipedia_content(wiki_url, api_key, model_id, base_url, target_lang, content_format):
    """
    Function to extract content from Wikipedia URL (placeholder for now)
    """
    wiki_id = extract_wiki_id(wiki_url)
    if not wiki_id:
        return "Invalid Wikipedia URL. Please check the URL and try again.", None, None, None, None, {}
    
    # Get the details of the Wikipedia article
    wiki_details = get_wiki_details(wiki_id)
    if content_format == "XML":
        content_sections = split_content_into_sections(wiki_details['wiki_xml'], content_format)
    else:
        content_sections = split_content_into_sections(wiki_details['content'], content_format)
    
    return (
        "Extraction complete! Sections: " + str(len(content_sections)),
        wiki_details['pageid'], 
        wiki_details['title'],
        wiki_details['summary'], 
        wiki_details['wiki_xml'],
        content_sections
    )

def translate_content(content, article_title, artice_summary, content_format, 
                      target_lang, api_key, model_id, base_url):

    llm_client = init_llm_client(api_key, base_url=base_url)

    translation_prompt = get_translate_prompt(
        article_title=article_title,
        artice_summary=artice_summary,
        original_content=content,
        target_lang=target_lang,
        content_format=content_format
    )

    # Call the LLM to get the translation - updating params to match OpenAI's requirements
    response = llm_client.chat.completions.create(
        model=model_id,
        messages=[
            {"role": "user", "content": translation_prompt}
        ],
        max_tokens=2000,
        temperature=0.5
    )

    decoded_object = json_repair.loads(response.choices[0].message.content)
    if 'output_content' in decoded_object:
        return decoded_object['output_content']

    return "Error: Translation output not found in the response."

def translate_section(section_content, article_title, article_summary, content_format, target_lang, api_key, model_id, base_url):
    """
    Translates a single section of the Wikipedia article
    """
    if not section_content or not api_key:
        return "Please provide content and API key for translation."
    
    return translate_content(
        content=section_content,
        article_title=article_title,
        artice_summary=article_summary,
        content_format=content_format,
        target_lang=target_lang,
        api_key=api_key,
        model_id=model_id,
        base_url=base_url
    )

def update_ui_with_sections(sections_dict):
    """
    Creates a list of components to display in the sections area
    """
    components = []
    
    if not sections_dict:
        # Return updates for all components (input, button, output)
        empty_updates = []
        for _ in range(100):  # Assuming max 100 sections
            empty_updates.extend([
                gr.update(visible=False),  # section textbox
                gr.update(visible=False),  # translate button
                gr.update(visible=False)   # translation output
            ])
        return empty_updates
    
    # Create visible components for available sections
    for section_name, section_content in sections_dict.items():
        # Update for section content textbox
        components.append(gr.update(
            value=section_content,
            label=f"Section: {section_name}",
            visible=True
        ))
        
        # Update for translate button
        components.append(gr.update(
            visible=True,
            value=f"Translate {section_name}"
        ))
        
        # Update for translation output
        components.append(gr.update(
            visible=True,
            value="",
            label=f"Translation: {section_name}"
        ))
    
    # Hide any unused components
    remaining = 100 - len(sections_dict)  # Assuming max 100 sections
    for _ in range(remaining):
        components.extend([
            gr.update(visible=False),  # section textbox
            gr.update(visible=False),  # translate button
            gr.update(visible=False)   # translation output
        ])
    
    return components

# Create Gradio app
with gr.Blocks(theme=gr.themes.Monochrome()) as demo:
    gr.Markdown("# Wikipedia Translator")
    
    # State variable to store sections
    sections_state = gr.State({})
    
    with gr.Row():
        # Sidebar for configuration
        with gr.Column(scale=1):
            gr.Markdown("### Configuration")
            
            with gr.Group():
                api_key = gr.Textbox(
                    label="OpenAI API Key", 
                    placeholder="sk-...",
                    type="password",
                )
                
                model_id = gr.Textbox(
                    label="OpenAI Model ID",
                    placeholder="gpt-4.1-mini",
                    value="gpt-4.1-mini",
                )
                
                base_url = gr.Textbox(
                    label="OpenAI API Base URL (Optional)",
                    placeholder="https://api.openai.com/v1",
                    info="Leave default unless using a proxy"
                )
                
                target_language = gr.Dropdown(
                    choices=list(LANGUAGES.keys()),
                    value="Arabic",
                    label="Target Language",
                )
                
                content_format = gr.Radio(
                    choices=["Text", "XML"],
                    value="XML",
                    label="Content Format",
                    info="Choose how to display article content"
                )
            
            gr.Markdown("### About")
            gr.Markdown("""
            This tool extracts content from Wikipedia articles and translates them into your selected language using OpenAI's language models.
            
            1. Configure your API settings
            2. Enter a Wikipedia URL
            3. Click Extract to process the article
            """)
        
        # Main content area
        with gr.Column(scale=2):
            gr.Markdown("### Wikipedia Article")
            
            wiki_url = gr.Textbox(
                label="Wikipedia URL",
                placeholder="https://en.wikipedia.org/wiki/Artificial_intelligence",
                info="Enter the full URL of the Wikipedia article"
            )
            
            extract_button = gr.Button("Extract and Prepare for Translation", variant="primary")
            
            output = gr.Markdown(label="Status")
            
            # Results area (will expand in the future)
            article_pageid = gr.Textbox(
                label="Article Page ID",
                placeholder="Page ID will appear here after extraction",
                interactive=False
            )

            article_title = gr.Textbox(
                label="Article Title",
                placeholder="Title will appear here after extraction",
                interactive=False
            )

            aticle_summary = gr.Textbox(
                label="Article Summary",
                placeholder="Summary will appear here after extraction",
                interactive=False
            )

            article_xml = gr.Textbox(
                label="Article XML",
                placeholder="XML will appear here after extraction",
                interactive=False,
                visible=False  # Hidden by default as it's usually large
            )
            
            # Pre-define section textboxes and related components
            gr.Markdown("### Article Sections")
            with gr.Column() as sections_container:
                section_components = []
                for i in range(100):  # Support up to 100 sections
                    with gr.Row():
                        section_textbox = gr.Textbox(visible=False, lines=4)
                        translate_btn = gr.Button("Translate", visible=False)
                        translation_output = gr.Textbox(visible=False, lines=4)
                        section_components.extend([section_textbox, translate_btn, translation_output])
            
                        # Connect the translate button to the translation function
                        translate_btn.click(
                            fn=translate_section,
                            inputs=[
                                section_textbox,
                                article_title,
                                aticle_summary,
                                content_format,
                                target_language,
                                api_key,
                                model_id,
                                base_url
                            ],
                            outputs=translation_output
                        )
    
    # Connect the extract button to the function
    extract_button.click(
        fn=extract_wikipedia_content,
        inputs=[wiki_url, api_key, model_id, base_url, target_language, content_format],
        outputs=[
            output,
            article_pageid,
            article_title,
            aticle_summary,
            article_xml,
            sections_state,
        ]
    ).then(
        fn=update_ui_with_sections,
        inputs=[sections_state],
        outputs=section_components
    )

# Launch the app
if __name__ == "__main__":
    demo.launch()