Spaces:
Sleeping
Sleeping
File size: 6,632 Bytes
ce96e8f c25ce6b e424603 ce96e8f e424603 c25ce6b e424603 ce96e8f e424603 ce96e8f e424603 ce96e8f e424603 ce96e8f e424603 ce96e8f e424603 ce96e8f e424603 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
import gradio as gr
from utils import (extract_wiki_id, get_wiki_details,
init_llm_client, split_content_into_sections,
get_translate_prompt)
import json
# Define language options for translation
LANGUAGES = {
"Arabic": "ar",
"English": "en",
"Spanish": "es",
"French": "fr",
"German": "de",
"Italian": "it",
"Portuguese": "pt",
"Russian": "ru",
"Japanese": "ja",
"Chinese": "zh",
"Hindi": "hi",
"Korean": "ko"
}
def extract_wikipedia_content(wiki_url, api_key, model_id, base_url, target_lang):
"""
Function to extract content from Wikipedia URL (placeholder for now)
"""
wiki_id = extract_wiki_id(wiki_url)
if not wiki_id:
return "Invalid Wikipedia URL. Please check the URL and try again.", None, None, None, None, {}
# Get the details of the Wikipedia article
wiki_details = get_wiki_details(wiki_id)
content_sections = split_content_into_sections(wiki_details['wiki_xml'])
return (
"Extraction complete! Sections: " + str(len(content_sections)),
wiki_details['pageid'],
wiki_details['title'],
wiki_details['summary'],
wiki_details['wiki_xml'],
content_sections
)
def translate_content(content, article_title, artice_summary, target_lang, api_key, model_id, base_url):
llm_client = init_llm_client(api_key, model_id, base_url)
translation_prompt = get_translate_prompt(
article_title=article_title,
artice_summary=artice_summary,
original_content=content,
target_lang=target_lang
)
# Call the LLM to get the translation
response = llm_client.responses.create(
messages=[
{"role": "user", "content": translation_prompt}
],
model=model_id,
max_tokens=2000,
temperature=0.5
)
def update_ui_with_sections(sections_dict):
"""
Creates a list of components to display in the sections area
"""
components = []
if not sections_dict:
return [gr.update(visible=False) for _ in range(10)] # Assuming max 10 sections
# Create visible components for available sections
for section_name, section_content in sections_dict.items():
components.append(gr.update(
value=section_content,
label=f"Section: {section_name}",
visible=True
))
# Hide any unused components
remaining = 100 - len(components) # Assuming max 100 sections
for _ in range(remaining):
components.append(gr.update(visible=False))
return components
# Create Gradio app
with gr.Blocks(theme=gr.themes.Monochrome()) as demo:
gr.Markdown("# Wikipedia Translator")
# State variable to store sections
sections_state = gr.State({})
with gr.Row():
# Sidebar for configuration
with gr.Column(scale=1):
gr.Markdown("### Configuration")
with gr.Group():
api_key = gr.Textbox(
label="OpenAI API Key",
placeholder="sk-...",
type="password",
)
model_id = gr.Textbox(
label="OpenAI Model ID",
placeholder="gpt-4.1-mini",
)
base_url = gr.Textbox(
label="OpenAI API Base URL (Optional)",
placeholder="https://api.openai.com/v1",
info="Leave default unless using a proxy"
)
target_language = gr.Dropdown(
choices=list(LANGUAGES.keys()),
value="Spanish",
label="Target Language",
)
gr.Markdown("### About")
gr.Markdown("""
This tool extracts content from Wikipedia articles and translates them into your selected language using OpenAI's language models.
1. Configure your API settings
2. Enter a Wikipedia URL
3. Click Extract to process the article
""")
# Main content area
with gr.Column(scale=2):
gr.Markdown("### Wikipedia Article")
wiki_url = gr.Textbox(
label="Wikipedia URL",
placeholder="https://en.wikipedia.org/wiki/Artificial_intelligence",
info="Enter the full URL of the Wikipedia article"
)
extract_button = gr.Button("Extract and Prepare for Translation", variant="primary")
output = gr.Markdown(label="Status")
# Results area (will expand in the future)
article_pageid = gr.Textbox(
label="Article Page ID",
placeholder="Page ID will appear here after extraction",
interactive=False
)
article_title = gr.Textbox(
label="Article Title",
placeholder="Title will appear here after extraction",
interactive=False
)
aticle_summary = gr.Textbox(
label="Article Summary",
placeholder="Summary will appear here after extraction",
interactive=False
)
article_xml = gr.Textbox(
label="Article XML",
placeholder="XML will appear here after extraction",
interactive=False,
visible=False # Hidden by default as it's usually large
)
# Pre-define section textboxes (limit to 100 for simplicity)
gr.Markdown("### Article Sections")
with gr.Column() as sections_container:
section_textboxes = [
gr.Textbox(visible=False, lines=4)
for _ in range(100) # Support up to 100 sections
]
# Connect the extract button to the function
extract_button.click(
fn=extract_wikipedia_content,
inputs=[wiki_url, api_key, model_id, base_url, target_language],
outputs=[
output,
article_pageid,
article_title,
aticle_summary,
article_xml,
sections_state,
]
).then(
fn=update_ui_with_sections,
inputs=[sections_state],
outputs=section_textboxes
)
# Launch the app
if __name__ == "__main__":
demo.launch() |