Spaces:
Sleeping
Sleeping
| import torch | |
| from PIL import Image | |
| from diffusers import LMSDiscreteScheduler | |
| import config | |
| def convert_latents_to_pil_images(pipe, latents): | |
| latents = (1 / 0.18215) * latents | |
| with torch.no_grad(): | |
| image = pipe.vae.decode(latents).sample | |
| image = (image / 2 + 0.5).clamp(0, 1) | |
| image = image.detach().cpu().permute(0, 2, 3, 1).numpy() | |
| images = (image * 255).round().astype("uint8") | |
| pil_images = [Image.fromarray(image) for image in images] | |
| return pil_images | |
| def populate_image_grid(imgs, rows, cols): | |
| assert len(imgs) == rows*cols | |
| w, h = imgs[0].size | |
| grid = Image.new('RGB', size=(cols*w, rows*h)) | |
| for i, img in enumerate(imgs): | |
| grid.paste(img, box=(i%cols*w, i//cols*h)) | |
| return grid |