Spaces:
Sleeping
Sleeping
File size: 8,180 Bytes
d4d94d2 79c27a2 d4d94d2 79c27a2 d4d94d2 79c27a2 d4d94d2 79c27a2 a0b8974 79c27a2 d4d94d2 79c27a2 d4d94d2 e65d0e5 79c27a2 8c6ba75 d4d94d2 79c27a2 d4d94d2 79c27a2 d4d94d2 8c6ba75 e65d0e5 8c6ba75 d4d94d2 e65d0e5 d4d94d2 8c6ba75 79c27a2 d4d94d2 a0b8974 d4d94d2 79c27a2 a0b8974 8c6ba75 d4d94d2 a0b8974 d4d94d2 a0b8974 d4d94d2 8c6ba75 d4d94d2 79c27a2 8c6ba75 79c27a2 a0b8974 d4d94d2 79c27a2 a0b8974 79c27a2 d4d94d2 79c27a2 a0b8974 79c27a2 d4d94d2 a0b8974 18a45f9 a0b8974 18a45f9 a0b8974 18a45f9 d4d94d2 a0b8974 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
# app.py
import torch
import numpy as np
from PIL import Image
import io
import gradio as gr
from torchvision import models, transforms
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from huggingface_hub import hf_hub_download
from model import CombinedModel, ImageToTextProjector
import pydicom
import os
import gc
from fastapi import FastAPI, File, UploadFile, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from typing import List
import base64
from fastapi.responses import JSONResponse
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
HF_TOKEN = os.getenv("HF_TOKEN")
os.environ["HF_HOME"] = "/tmp/huggingface_cache"
# Model loading
tokenizer = AutoTokenizer.from_pretrained("baliddeki/phronesis-ml", token=HF_TOKEN)
video_model = models.video.r3d_18(weights="KINETICS400_V1")
video_model.fc = torch.nn.Linear(video_model.fc.in_features, 512)
report_generator = AutoModelForSeq2SeqLM.from_pretrained("GanjinZero/biobart-v2-base")
projector = ImageToTextProjector(512, report_generator.config.d_model)
num_classes = 4
class_names = ["acute", "normal", "chronic", "lacunar"]
combined_model = CombinedModel(video_model, report_generator, num_classes, projector, tokenizer)
model_file = hf_hub_download("baliddeki/phronesis-ml", "pytorch_model.bin", token=HF_TOKEN)
state_dict = torch.load(model_file, map_location=device)
combined_model.load_state_dict(state_dict)
combined_model.to(device)
combined_model.eval()
image_transform = transforms.Compose([
transforms.Resize((112, 112)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.43216, 0.394666, 0.37645], std=[0.22803, 0.22145, 0.216989]),
])
def dicom_to_image(file_bytes):
"""Convert DICOM file bytes to PIL Image"""
dicom_file = pydicom.dcmread(io.BytesIO(file_bytes))
pixel_array = dicom_file.pixel_array.astype(np.float32)
pixel_array = ((pixel_array - pixel_array.min()) / pixel_array.ptp()) * 255.0
pixel_array = pixel_array.astype(np.uint8)
return Image.fromarray(pixel_array).convert("RGB")
def process_images(file_data_list):
"""Core image processing logic used by both Gradio and FastAPI"""
if not file_data_list:
return "No images uploaded.", ""
processed_imgs = []
for file_data in file_data_list:
filename = file_data.get('filename', '').lower()
file_content = file_data.get('content')
try:
if filename.endswith((".dcm", ".ima")):
img = dicom_to_image(file_content)
else:
img = Image.open(io.BytesIO(file_content)).convert("RGB")
processed_imgs.append(img)
except Exception as e:
print(f"Error processing file {filename}: {e}")
continue
if not processed_imgs:
return "No valid images processed.", ""
# Sample frames for video model
n_frames = 16
if len(processed_imgs) >= n_frames:
images_sampled = [
processed_imgs[i]
for i in np.linspace(0, len(processed_imgs)-1, n_frames, dtype=int)
]
else:
images_sampled = processed_imgs + [processed_imgs[-1]] * (n_frames - len(processed_imgs))
# Transform images to tensors
tensor_imgs = [image_transform(img) for img in images_sampled]
input_tensor = torch.stack(tensor_imgs).permute(1, 0, 2, 3).unsqueeze(0).to(device)
# Model inference
with torch.no_grad():
class_logits, report, _ = combined_model(input_tensor)
class_pred = torch.argmax(class_logits, dim=1).item()
class_name = class_names[class_pred]
# Cleanup
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
return class_name, report[0] if report else "No report generated."
def predict_gradio(files):
"""Gradio interface wrapper"""
if not files:
return "No images uploaded.", ""
file_data_list = []
for file_obj in files:
try:
file_content = file_obj.read() if hasattr(file_obj, 'read') else open(file_obj.name, 'rb').read()
file_data_list.append({
'filename': file_obj.name if hasattr(file_obj, 'name') else str(file_obj),
'content': file_content
})
except Exception as e:
print(f"Error reading file: {e}")
continue
return process_images(file_data_list)
# Create FastAPI app
app = FastAPI(
title="Phronesis ML API",
description="Medical Image Analysis API with Gradio Interface",
version="1.0.0"
)
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/")
async def root():
"""Root endpoint"""
return {
"message": "Phronesis ML API",
"status": "running",
"endpoints": {
"predict": "/predict",
"health": "/health",
"gradio": "/gradio"
}
}
@app.get("/health")
async def health_check():
"""Health check endpoint"""
return {
"status": "healthy",
"model_loaded": True,
"device": str(device)
}
@app.post("/predict")
async def predict_api(files: List[UploadFile] = File(...)):
"""
API endpoint for medical image prediction
Args:
files: List of uploaded image files (DICOM, JPG, PNG, etc.)
Returns:
JSON response with predicted class and generated report
"""
try:
if not files:
raise HTTPException(status_code=400, detail="No files uploaded")
# Process uploaded files
file_data_list = []
for file in files:
try:
content = await file.read()
file_data_list.append({
'filename': file.filename or 'unknown',
'content': content
})
except Exception as e:
print(f"Error reading uploaded file {file.filename}: {e}")
continue
if not file_data_list:
raise HTTPException(status_code=400, detail="No valid files processed")
# Get predictions
predicted_class, generated_report = process_images(file_data_list)
# Return results
return JSONResponse(content={
"status": "success",
"data": {
"predicted_class": predicted_class,
"generated_report": generated_report,
"processed_files": len(file_data_list)
}
})
except HTTPException:
raise
except Exception as e:
print(f"Prediction error: {e}")
raise HTTPException(status_code=500, detail=f"Prediction failed: {str(e)}")
@app.exception_handler(Exception)
async def global_exception_handler(request, exc):
"""Global exception handler"""
return JSONResponse(
status_code=500,
content={
"status": "error",
"message": "Internal server error",
"detail": str(exc)
}
)
# Create Gradio interface
demo = gr.Interface(
fn=predict_gradio,
inputs=gr.File(
file_count="multiple",
file_types=[".dcm", ".ima", ".jpg", ".jpeg", ".png", ".bmp"],
label="Upload Medical Images"
),
outputs=[
gr.Textbox(label="Predicted Class"),
gr.Textbox(label="Generated Report", lines=5)
],
title="🩺 Phronesis Medical Report Generator",
description="""
Upload CT scan images to generate a medical report and classification.
**Supported formats:** DICOM (.dcm, .ima), JPEG, PNG, BMP
**API Endpoint:** `/predict` (POST)
""",
examples=[],
allow_flagging="never"
)
# Mount Gradio app to FastAPI
app = gr.mount_gradio_app(app, demo, path="/gradio")
# Launch configuration
if __name__ == "__main__":
import uvicorn
# For local development
# uvicorn.run(app, host="0.0.0.0", port=7860)
# For Hugging Face Spaces
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
show_error=True
) |