banjiola commited on
Commit
96f3d88
Β·
verified Β·
1 Parent(s): 688954c

update.Readme

Browse files
Files changed (1) hide show
  1. README.md +48 -3
README.md CHANGED
@@ -1,14 +1,59 @@
1
  ---
2
  title: Text Summarization
3
  emoji: πŸ’¬
4
- colorFrom: yellow
5
  colorTo: purple
6
  sdk: gradio
7
- sdk_version: 5.0.1
8
  app_file: app.py
9
  pinned: false
10
  license: mit
11
  short_description: For Text Summarization
12
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
 
14
- An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
 
1
  ---
2
  title: Text Summarization
3
  emoji: πŸ’¬
4
+ colorFrom: blue
5
  colorTo: purple
6
  sdk: gradio
7
+ sdk_version: 5.29.1
8
  app_file: app.py
9
  pinned: false
10
  license: mit
11
  short_description: For Text Summarization
12
  ---
13
+ # πŸ“˜ AI Text Summarizer + Named Entity Recognition (NER)
14
+
15
+ This web app helps users quickly understand large blocks of text by:
16
+ - Generating concise summaries using the `bart-large-cnn` model
17
+ - Highlighting important entities such as people, organizations, and locations with `dslim/bert-base-NER`
18
+
19
+ Built with πŸ€— Hugging Face Transformers and Gradio.
20
+
21
+ ---
22
+
23
+ ## πŸš€ Features
24
+
25
+ - ✨ **Text Summarization**
26
+ Automatically condenses long-form text into short, meaningful summaries.
27
+
28
+ - 🧠 **Named Entity Recognition (NER)**
29
+ Highlights key entities (e.g., names, places, organizations) in the summary for better context.
30
+
31
+ - 🌐 **User-Friendly Interface**
32
+ Easy-to-use web interface with live examples. Just paste your text (100+ words), and get insights instantly!
33
+
34
+ ---
35
+
36
+ ## πŸ›  Models Used
37
+
38
+ - [`facebook/bart-large-cnn`](https://huggingface.co/facebook/bart-large-cnn) – For text summarization
39
+ - [`dslim/bert-base-NER`](https://huggingface.co/dslim/bert-base-NER) – For named entity recognition
40
+
41
+ ---
42
+
43
+ ## πŸ”§ How It Works
44
+
45
+ 1. User inputs at least 100 words of text.
46
+ 2. The app summarizes the input using the BART model.
47
+ 3. The summary is passed to the BERT model to extract and highlight named entities.
48
+ 4. Output is displayed with highlights over the summary text.
49
+
50
+ ---
51
+
52
+ ## πŸ’» Running Locally
53
+
54
+ ```bash
55
+ git clone https://huggingface.co/spaces/YOUR-USERNAME/YOUR-APP-NAME
56
+ cd YOUR-APP-NAME
57
+ pip install -r requirements.txt
58
+ python app.py
59