Spaces:
Runtime error
Runtime error
RohitGandikota
commited on
Commit
ยท
47a88ae
1
Parent(s):
6491cdf
pushing training code
Browse files- __init__.py +2 -1
- app.py +27 -9
- trainscripts/textsliders/data/config-xl.yaml +1 -1
- trainscripts/textsliders/data/prompts-xl.yaml +27 -18
- trainscripts/textsliders/demotrain.py +434 -0
- trainscripts/textsliders/prompt_util.py +10 -1
__init__.py
CHANGED
|
@@ -1 +1,2 @@
|
|
| 1 |
-
from trainscripts.textsliders import lora
|
|
|
|
|
|
| 1 |
+
from trainscripts.textsliders import lora
|
| 2 |
+
from trainscripts.textsliders import demotrain
|
app.py
CHANGED
|
@@ -6,7 +6,7 @@ from diffusers.pipelines import StableDiffusionXLPipeline
|
|
| 6 |
StableDiffusionXLPipeline.__call__ = call
|
| 7 |
import os
|
| 8 |
from trainscripts.textsliders.lora import LoRANetwork, DEFAULT_TARGET_REPLACE, UNET_TARGET_REPLACE_MODULE_CONV
|
| 9 |
-
|
| 10 |
|
| 11 |
os.environ['CURL_CA_BUNDLE'] = ''
|
| 12 |
model_map = {'Age' : 'models/age.pt',
|
|
@@ -204,10 +204,26 @@ class Demo:
|
|
| 204 |
)
|
| 205 |
|
| 206 |
def train(self, target_concept,positive_prompt, negative_prompt, rank, iterations_input, lr_input, train_method, neg_guidance, iterations, lr, pbar = gr.Progress(track_tqdm=True)):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
|
| 208 |
-
|
| 209 |
-
# return [gr.update(interactive=True, value='Train'), gr.update(value='Someone else is training... Try again soon'), None, gr.update()]
|
| 210 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
# if train_method == 'ESD-x':
|
| 212 |
|
| 213 |
# modules = ".*attn2$"
|
|
@@ -223,7 +239,7 @@ class Demo:
|
|
| 223 |
# modules = ".*attn1$"
|
| 224 |
# frozen = []
|
| 225 |
|
| 226 |
-
#
|
| 227 |
|
| 228 |
# save_path = f"models/{randn}_{prompt.lower().replace(' ', '')}.pt"
|
| 229 |
|
|
@@ -237,7 +253,7 @@ class Demo:
|
|
| 237 |
|
| 238 |
# model_map['Custom'] = save_path
|
| 239 |
|
| 240 |
-
#
|
| 241 |
return [None, None, None, None]
|
| 242 |
|
| 243 |
def inference(self, prompt, seed, start_noise, scale, model_name, pbar = gr.Progress(track_tqdm=True)):
|
|
@@ -267,10 +283,12 @@ class Demo:
|
|
| 267 |
name = os.path.basename(model_path)
|
| 268 |
rank = 4
|
| 269 |
alpha = 1
|
| 270 |
-
if
|
| 271 |
-
rank =
|
| 272 |
-
|
| 273 |
-
|
|
|
|
|
|
|
| 274 |
if 'alpha1' in model_path:
|
| 275 |
alpha = 1.0
|
| 276 |
network = LoRANetwork(
|
|
|
|
| 6 |
StableDiffusionXLPipeline.__call__ = call
|
| 7 |
import os
|
| 8 |
from trainscripts.textsliders.lora import LoRANetwork, DEFAULT_TARGET_REPLACE, UNET_TARGET_REPLACE_MODULE_CONV
|
| 9 |
+
from trainscripts.textsliders.demotrain import train_xl
|
| 10 |
|
| 11 |
os.environ['CURL_CA_BUNDLE'] = ''
|
| 12 |
model_map = {'Age' : 'models/age.pt',
|
|
|
|
| 204 |
)
|
| 205 |
|
| 206 |
def train(self, target_concept,positive_prompt, negative_prompt, rank, iterations_input, lr_input, train_method, neg_guidance, iterations, lr, pbar = gr.Progress(track_tqdm=True)):
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
randn = torch.randint(1, 10000000, (1,)).item()
|
| 210 |
+
save_name = f'{randn}_{target_concept.replace(',','').replace(' ','').replace('.','')[:10]}_{positive_prompt.replace(',','').replace(' ','').replace('.','')[:10]}'
|
| 211 |
+
save_name += f'_alpha-{1}'
|
| 212 |
+
save_name += f'_noxattn'
|
| 213 |
+
save_name += f'_rank_{rank}.pt'
|
| 214 |
+
|
| 215 |
+
if self.training:
|
| 216 |
+
return [gr.update(interactive=True, value='Train'), gr.update(value='Someone else is training... Try again soon'), None, gr.update()]
|
| 217 |
+
|
| 218 |
+
self.training = True
|
| 219 |
+
train_xl(target, postive, negative, lr, iterations, config_file, rank, device, attributes)
|
| 220 |
|
| 221 |
+
self.training = False
|
|
|
|
| 222 |
|
| 223 |
+
torch.cuda.empty_cache()
|
| 224 |
+
model_map['Custom Slider'] = f'models/{save_name}'
|
| 225 |
+
|
| 226 |
+
return [gr.update(interactive=True, value='Train'), gr.update(value='Done Training! \n Try your custom slider in the "Test" tab'), save_path, gr.Dropdown.update(choices=list(model_map.keys()), value='Custom Slider')]
|
| 227 |
# if train_method == 'ESD-x':
|
| 228 |
|
| 229 |
# modules = ".*attn2$"
|
|
|
|
| 239 |
# modules = ".*attn1$"
|
| 240 |
# frozen = []
|
| 241 |
|
| 242 |
+
#
|
| 243 |
|
| 244 |
# save_path = f"models/{randn}_{prompt.lower().replace(' ', '')}.pt"
|
| 245 |
|
|
|
|
| 253 |
|
| 254 |
# model_map['Custom'] = save_path
|
| 255 |
|
| 256 |
+
#
|
| 257 |
return [None, None, None, None]
|
| 258 |
|
| 259 |
def inference(self, prompt, seed, start_noise, scale, model_name, pbar = gr.Progress(track_tqdm=True)):
|
|
|
|
| 283 |
name = os.path.basename(model_path)
|
| 284 |
rank = 4
|
| 285 |
alpha = 1
|
| 286 |
+
if rank in model_path:
|
| 287 |
+
rank = int(model_path.split('_')[-1].replace('.pt',''))
|
| 288 |
+
# if 'rank4' in model_path:
|
| 289 |
+
# rank = 4
|
| 290 |
+
# if 'rank8' in model_path:
|
| 291 |
+
# rank = 8
|
| 292 |
if 'alpha1' in model_path:
|
| 293 |
alpha = 1.0
|
| 294 |
network = LoRANetwork(
|
trainscripts/textsliders/data/config-xl.yaml
CHANGED
|
@@ -19,7 +19,7 @@ train:
|
|
| 19 |
save:
|
| 20 |
name: "temp"
|
| 21 |
path: "./models"
|
| 22 |
-
per_steps:
|
| 23 |
precision: "bfloat16"
|
| 24 |
logging:
|
| 25 |
use_wandb: false
|
|
|
|
| 19 |
save:
|
| 20 |
name: "temp"
|
| 21 |
path: "./models"
|
| 22 |
+
per_steps: 5000000
|
| 23 |
precision: "bfloat16"
|
| 24 |
logging:
|
| 25 |
use_wandb: false
|
trainscripts/textsliders/data/prompts-xl.yaml
CHANGED
|
@@ -1,3 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
####################################################################################################### AGE SLIDER
|
| 2 |
# - target: "male person" # what word for erasing the positive concept from
|
| 3 |
# positive: "male person, very old" # concept to erase
|
|
@@ -257,24 +266,24 @@
|
|
| 257 |
# dynamic_resolution: false
|
| 258 |
# batch_size: 1
|
| 259 |
####################################################################################################### SCULPTURE SLIDER
|
| 260 |
-
- target: "male person" # what word for erasing the positive concept from
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
- target: "female person" # what word for erasing the positive concept from
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
####################################################################################################### METAL SLIDER
|
| 279 |
# - target: "" # what word for erasing the positive concept from
|
| 280 |
# positive: "made out of metal, metallic style, iron, copper, platinum metal," # concept to erase
|
|
|
|
| 1 |
+
- target: "" # what word for erasing the positive concept from
|
| 2 |
+
positive: "" # concept to erase
|
| 3 |
+
unconditional: "" # word to take the difference from the positive concept
|
| 4 |
+
neutral: "" # starting point for conditioning the target
|
| 5 |
+
action: "enhance" # erase or enhance
|
| 6 |
+
guidance_scale: 4
|
| 7 |
+
resolution: 512
|
| 8 |
+
dynamic_resolution: false
|
| 9 |
+
batch_size: 1
|
| 10 |
####################################################################################################### AGE SLIDER
|
| 11 |
# - target: "male person" # what word for erasing the positive concept from
|
| 12 |
# positive: "male person, very old" # concept to erase
|
|
|
|
| 266 |
# dynamic_resolution: false
|
| 267 |
# batch_size: 1
|
| 268 |
####################################################################################################### SCULPTURE SLIDER
|
| 269 |
+
# - target: "male person" # what word for erasing the positive concept from
|
| 270 |
+
# positive: "male person, cement sculpture, cement greek statue style" # concept to erase
|
| 271 |
+
# unconditional: "male person, realistic, hyper realistic" # word to take the difference from the positive concept
|
| 272 |
+
# neutral: "male person" # starting point for conditioning the target
|
| 273 |
+
# action: "enhance" # erase or enhance
|
| 274 |
+
# guidance_scale: 4
|
| 275 |
+
# resolution: 512
|
| 276 |
+
# dynamic_resolution: false
|
| 277 |
+
# batch_size: 1
|
| 278 |
+
# - target: "female person" # what word for erasing the positive concept from
|
| 279 |
+
# positive: "female person, cement sculpture, cement greek statue style" # concept to erase
|
| 280 |
+
# unconditional: "female person, realistic, hyper realistic" # word to take the difference from the positive concept
|
| 281 |
+
# neutral: "female person" # starting point for conditioning the target
|
| 282 |
+
# action: "enhance" # erase or enhance
|
| 283 |
+
# guidance_scale: 4
|
| 284 |
+
# resolution: 512
|
| 285 |
+
# dynamic_resolution: false
|
| 286 |
+
# batch_size: 1
|
| 287 |
####################################################################################################### METAL SLIDER
|
| 288 |
# - target: "" # what word for erasing the positive concept from
|
| 289 |
# positive: "made out of metal, metallic style, iron, copper, platinum metal," # concept to erase
|
trainscripts/textsliders/demotrain.py
ADDED
|
@@ -0,0 +1,434 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ref:
|
| 2 |
+
# - https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py#L566
|
| 3 |
+
# - https://huggingface.co/spaces/baulab/Erasing-Concepts-In-Diffusion/blob/main/train.py
|
| 4 |
+
|
| 5 |
+
from typing import List, Optional
|
| 6 |
+
import argparse
|
| 7 |
+
import ast
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
import gc
|
| 10 |
+
|
| 11 |
+
import torch
|
| 12 |
+
from tqdm import tqdm
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
from lora import LoRANetwork, DEFAULT_TARGET_REPLACE, UNET_TARGET_REPLACE_MODULE_CONV
|
| 16 |
+
import train_util
|
| 17 |
+
import model_util
|
| 18 |
+
import prompt_util
|
| 19 |
+
from prompt_util import (
|
| 20 |
+
PromptEmbedsCache,
|
| 21 |
+
PromptEmbedsPair,
|
| 22 |
+
PromptSettings,
|
| 23 |
+
PromptEmbedsXL,
|
| 24 |
+
)
|
| 25 |
+
import debug_util
|
| 26 |
+
import config_util
|
| 27 |
+
from config_util import RootConfig
|
| 28 |
+
|
| 29 |
+
import wandb
|
| 30 |
+
|
| 31 |
+
NUM_IMAGES_PER_PROMPT = 1
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def flush():
|
| 35 |
+
torch.cuda.empty_cache()
|
| 36 |
+
gc.collect()
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def train(
|
| 40 |
+
config: RootConfig,
|
| 41 |
+
prompts: list[PromptSettings],
|
| 42 |
+
device,
|
| 43 |
+
):
|
| 44 |
+
metadata = {
|
| 45 |
+
"prompts": ",".join([prompt.json() for prompt in prompts]),
|
| 46 |
+
"config": config.json(),
|
| 47 |
+
}
|
| 48 |
+
save_path = Path(config.save.path)
|
| 49 |
+
|
| 50 |
+
modules = DEFAULT_TARGET_REPLACE
|
| 51 |
+
if config.network.type == "c3lier":
|
| 52 |
+
modules += UNET_TARGET_REPLACE_MODULE_CONV
|
| 53 |
+
|
| 54 |
+
if config.logging.verbose:
|
| 55 |
+
print(metadata)
|
| 56 |
+
|
| 57 |
+
if config.logging.use_wandb:
|
| 58 |
+
wandb.init(project=f"LECO_{config.save.name}", config=metadata)
|
| 59 |
+
|
| 60 |
+
weight_dtype = config_util.parse_precision(config.train.precision)
|
| 61 |
+
save_weight_dtype = config_util.parse_precision(config.train.precision)
|
| 62 |
+
|
| 63 |
+
(
|
| 64 |
+
tokenizers,
|
| 65 |
+
text_encoders,
|
| 66 |
+
unet,
|
| 67 |
+
noise_scheduler,
|
| 68 |
+
) = model_util.load_models_xl(
|
| 69 |
+
config.pretrained_model.name_or_path,
|
| 70 |
+
scheduler_name=config.train.noise_scheduler,
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
for text_encoder in text_encoders:
|
| 74 |
+
text_encoder.to(device, dtype=weight_dtype)
|
| 75 |
+
text_encoder.requires_grad_(False)
|
| 76 |
+
text_encoder.eval()
|
| 77 |
+
|
| 78 |
+
unet.to(device, dtype=weight_dtype)
|
| 79 |
+
if config.other.use_xformers:
|
| 80 |
+
unet.enable_xformers_memory_efficient_attention()
|
| 81 |
+
unet.requires_grad_(False)
|
| 82 |
+
unet.eval()
|
| 83 |
+
|
| 84 |
+
network = LoRANetwork(
|
| 85 |
+
unet,
|
| 86 |
+
rank=config.network.rank,
|
| 87 |
+
multiplier=1.0,
|
| 88 |
+
alpha=config.network.alpha,
|
| 89 |
+
train_method=config.network.training_method,
|
| 90 |
+
).to(device, dtype=weight_dtype)
|
| 91 |
+
|
| 92 |
+
optimizer_module = train_util.get_optimizer(config.train.optimizer)
|
| 93 |
+
#optimizer_args
|
| 94 |
+
optimizer_kwargs = {}
|
| 95 |
+
if config.train.optimizer_args is not None and len(config.train.optimizer_args) > 0:
|
| 96 |
+
for arg in config.train.optimizer_args.split(" "):
|
| 97 |
+
key, value = arg.split("=")
|
| 98 |
+
value = ast.literal_eval(value)
|
| 99 |
+
optimizer_kwargs[key] = value
|
| 100 |
+
|
| 101 |
+
optimizer = optimizer_module(network.prepare_optimizer_params(), lr=config.train.lr, **optimizer_kwargs)
|
| 102 |
+
lr_scheduler = train_util.get_lr_scheduler(
|
| 103 |
+
config.train.lr_scheduler,
|
| 104 |
+
optimizer,
|
| 105 |
+
max_iterations=config.train.iterations,
|
| 106 |
+
lr_min=config.train.lr / 100,
|
| 107 |
+
)
|
| 108 |
+
criteria = torch.nn.MSELoss()
|
| 109 |
+
|
| 110 |
+
print("Prompts")
|
| 111 |
+
for settings in prompts:
|
| 112 |
+
print(settings)
|
| 113 |
+
|
| 114 |
+
# debug
|
| 115 |
+
debug_util.check_requires_grad(network)
|
| 116 |
+
debug_util.check_training_mode(network)
|
| 117 |
+
|
| 118 |
+
cache = PromptEmbedsCache()
|
| 119 |
+
prompt_pairs: list[PromptEmbedsPair] = []
|
| 120 |
+
|
| 121 |
+
with torch.no_grad():
|
| 122 |
+
for settings in prompts:
|
| 123 |
+
print(settings)
|
| 124 |
+
for prompt in [
|
| 125 |
+
settings.target,
|
| 126 |
+
settings.positive,
|
| 127 |
+
settings.neutral,
|
| 128 |
+
settings.unconditional,
|
| 129 |
+
]:
|
| 130 |
+
if cache[prompt] == None:
|
| 131 |
+
tex_embs, pool_embs = train_util.encode_prompts_xl(
|
| 132 |
+
tokenizers,
|
| 133 |
+
text_encoders,
|
| 134 |
+
[prompt],
|
| 135 |
+
num_images_per_prompt=NUM_IMAGES_PER_PROMPT,
|
| 136 |
+
)
|
| 137 |
+
cache[prompt] = PromptEmbedsXL(
|
| 138 |
+
tex_embs,
|
| 139 |
+
pool_embs
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
prompt_pairs.append(
|
| 143 |
+
PromptEmbedsPair(
|
| 144 |
+
criteria,
|
| 145 |
+
cache[settings.target],
|
| 146 |
+
cache[settings.positive],
|
| 147 |
+
cache[settings.unconditional],
|
| 148 |
+
cache[settings.neutral],
|
| 149 |
+
settings,
|
| 150 |
+
)
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
|
| 154 |
+
del tokenizer, text_encoder
|
| 155 |
+
|
| 156 |
+
flush()
|
| 157 |
+
|
| 158 |
+
pbar = tqdm(range(config.train.iterations))
|
| 159 |
+
|
| 160 |
+
loss = None
|
| 161 |
+
|
| 162 |
+
for i in pbar:
|
| 163 |
+
with torch.no_grad():
|
| 164 |
+
noise_scheduler.set_timesteps(
|
| 165 |
+
config.train.max_denoising_steps, device=device
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
optimizer.zero_grad()
|
| 169 |
+
|
| 170 |
+
prompt_pair: PromptEmbedsPair = prompt_pairs[
|
| 171 |
+
torch.randint(0, len(prompt_pairs), (1,)).item()
|
| 172 |
+
]
|
| 173 |
+
|
| 174 |
+
# 1 ~ 49 ใใใฉใณใใ
|
| 175 |
+
timesteps_to = torch.randint(
|
| 176 |
+
1, config.train.max_denoising_steps, (1,)
|
| 177 |
+
).item()
|
| 178 |
+
|
| 179 |
+
height, width = prompt_pair.resolution, prompt_pair.resolution
|
| 180 |
+
if prompt_pair.dynamic_resolution:
|
| 181 |
+
height, width = train_util.get_random_resolution_in_bucket(
|
| 182 |
+
prompt_pair.resolution
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
if config.logging.verbose:
|
| 186 |
+
print("gudance_scale:", prompt_pair.guidance_scale)
|
| 187 |
+
print("resolution:", prompt_pair.resolution)
|
| 188 |
+
print("dynamic_resolution:", prompt_pair.dynamic_resolution)
|
| 189 |
+
if prompt_pair.dynamic_resolution:
|
| 190 |
+
print("bucketed resolution:", (height, width))
|
| 191 |
+
print("batch_size:", prompt_pair.batch_size)
|
| 192 |
+
print("dynamic_crops:", prompt_pair.dynamic_crops)
|
| 193 |
+
|
| 194 |
+
latents = train_util.get_initial_latents(
|
| 195 |
+
noise_scheduler, prompt_pair.batch_size, height, width, 1
|
| 196 |
+
).to(device, dtype=weight_dtype)
|
| 197 |
+
|
| 198 |
+
add_time_ids = train_util.get_add_time_ids(
|
| 199 |
+
height,
|
| 200 |
+
width,
|
| 201 |
+
dynamic_crops=prompt_pair.dynamic_crops,
|
| 202 |
+
dtype=weight_dtype,
|
| 203 |
+
).to(device, dtype=weight_dtype)
|
| 204 |
+
|
| 205 |
+
with network:
|
| 206 |
+
# ใกใใฃใจใใใคใบใใใใใใฎใ่ฟใ
|
| 207 |
+
denoised_latents = train_util.diffusion_xl(
|
| 208 |
+
unet,
|
| 209 |
+
noise_scheduler,
|
| 210 |
+
latents, # ๅ็ดใชใใคใบใฎlatentsใๆธกใ
|
| 211 |
+
text_embeddings=train_util.concat_embeddings(
|
| 212 |
+
prompt_pair.unconditional.text_embeds,
|
| 213 |
+
prompt_pair.target.text_embeds,
|
| 214 |
+
prompt_pair.batch_size,
|
| 215 |
+
),
|
| 216 |
+
add_text_embeddings=train_util.concat_embeddings(
|
| 217 |
+
prompt_pair.unconditional.pooled_embeds,
|
| 218 |
+
prompt_pair.target.pooled_embeds,
|
| 219 |
+
prompt_pair.batch_size,
|
| 220 |
+
),
|
| 221 |
+
add_time_ids=train_util.concat_embeddings(
|
| 222 |
+
add_time_ids, add_time_ids, prompt_pair.batch_size
|
| 223 |
+
),
|
| 224 |
+
start_timesteps=0,
|
| 225 |
+
total_timesteps=timesteps_to,
|
| 226 |
+
guidance_scale=3,
|
| 227 |
+
)
|
| 228 |
+
|
| 229 |
+
noise_scheduler.set_timesteps(1000)
|
| 230 |
+
|
| 231 |
+
current_timestep = noise_scheduler.timesteps[
|
| 232 |
+
int(timesteps_to * 1000 / config.train.max_denoising_steps)
|
| 233 |
+
]
|
| 234 |
+
|
| 235 |
+
# with network: ใฎๅคใงใฏ็ฉบใฎLoRAใฎใฟใๆๅนใซใชใ
|
| 236 |
+
positive_latents = train_util.predict_noise_xl(
|
| 237 |
+
unet,
|
| 238 |
+
noise_scheduler,
|
| 239 |
+
current_timestep,
|
| 240 |
+
denoised_latents,
|
| 241 |
+
text_embeddings=train_util.concat_embeddings(
|
| 242 |
+
prompt_pair.unconditional.text_embeds,
|
| 243 |
+
prompt_pair.positive.text_embeds,
|
| 244 |
+
prompt_pair.batch_size,
|
| 245 |
+
),
|
| 246 |
+
add_text_embeddings=train_util.concat_embeddings(
|
| 247 |
+
prompt_pair.unconditional.pooled_embeds,
|
| 248 |
+
prompt_pair.positive.pooled_embeds,
|
| 249 |
+
prompt_pair.batch_size,
|
| 250 |
+
),
|
| 251 |
+
add_time_ids=train_util.concat_embeddings(
|
| 252 |
+
add_time_ids, add_time_ids, prompt_pair.batch_size
|
| 253 |
+
),
|
| 254 |
+
guidance_scale=1,
|
| 255 |
+
).to(device, dtype=weight_dtype)
|
| 256 |
+
neutral_latents = train_util.predict_noise_xl(
|
| 257 |
+
unet,
|
| 258 |
+
noise_scheduler,
|
| 259 |
+
current_timestep,
|
| 260 |
+
denoised_latents,
|
| 261 |
+
text_embeddings=train_util.concat_embeddings(
|
| 262 |
+
prompt_pair.unconditional.text_embeds,
|
| 263 |
+
prompt_pair.neutral.text_embeds,
|
| 264 |
+
prompt_pair.batch_size,
|
| 265 |
+
),
|
| 266 |
+
add_text_embeddings=train_util.concat_embeddings(
|
| 267 |
+
prompt_pair.unconditional.pooled_embeds,
|
| 268 |
+
prompt_pair.neutral.pooled_embeds,
|
| 269 |
+
prompt_pair.batch_size,
|
| 270 |
+
),
|
| 271 |
+
add_time_ids=train_util.concat_embeddings(
|
| 272 |
+
add_time_ids, add_time_ids, prompt_pair.batch_size
|
| 273 |
+
),
|
| 274 |
+
guidance_scale=1,
|
| 275 |
+
).to(device, dtype=weight_dtype)
|
| 276 |
+
unconditional_latents = train_util.predict_noise_xl(
|
| 277 |
+
unet,
|
| 278 |
+
noise_scheduler,
|
| 279 |
+
current_timestep,
|
| 280 |
+
denoised_latents,
|
| 281 |
+
text_embeddings=train_util.concat_embeddings(
|
| 282 |
+
prompt_pair.unconditional.text_embeds,
|
| 283 |
+
prompt_pair.unconditional.text_embeds,
|
| 284 |
+
prompt_pair.batch_size,
|
| 285 |
+
),
|
| 286 |
+
add_text_embeddings=train_util.concat_embeddings(
|
| 287 |
+
prompt_pair.unconditional.pooled_embeds,
|
| 288 |
+
prompt_pair.unconditional.pooled_embeds,
|
| 289 |
+
prompt_pair.batch_size,
|
| 290 |
+
),
|
| 291 |
+
add_time_ids=train_util.concat_embeddings(
|
| 292 |
+
add_time_ids, add_time_ids, prompt_pair.batch_size
|
| 293 |
+
),
|
| 294 |
+
guidance_scale=1,
|
| 295 |
+
).to(device, dtype=weight_dtype)
|
| 296 |
+
|
| 297 |
+
if config.logging.verbose:
|
| 298 |
+
print("positive_latents:", positive_latents[0, 0, :5, :5])
|
| 299 |
+
print("neutral_latents:", neutral_latents[0, 0, :5, :5])
|
| 300 |
+
print("unconditional_latents:", unconditional_latents[0, 0, :5, :5])
|
| 301 |
+
|
| 302 |
+
with network:
|
| 303 |
+
target_latents = train_util.predict_noise_xl(
|
| 304 |
+
unet,
|
| 305 |
+
noise_scheduler,
|
| 306 |
+
current_timestep,
|
| 307 |
+
denoised_latents,
|
| 308 |
+
text_embeddings=train_util.concat_embeddings(
|
| 309 |
+
prompt_pair.unconditional.text_embeds,
|
| 310 |
+
prompt_pair.target.text_embeds,
|
| 311 |
+
prompt_pair.batch_size,
|
| 312 |
+
),
|
| 313 |
+
add_text_embeddings=train_util.concat_embeddings(
|
| 314 |
+
prompt_pair.unconditional.pooled_embeds,
|
| 315 |
+
prompt_pair.target.pooled_embeds,
|
| 316 |
+
prompt_pair.batch_size,
|
| 317 |
+
),
|
| 318 |
+
add_time_ids=train_util.concat_embeddings(
|
| 319 |
+
add_time_ids, add_time_ids, prompt_pair.batch_size
|
| 320 |
+
),
|
| 321 |
+
guidance_scale=1,
|
| 322 |
+
).to(device, dtype=weight_dtype)
|
| 323 |
+
|
| 324 |
+
if config.logging.verbose:
|
| 325 |
+
print("target_latents:", target_latents[0, 0, :5, :5])
|
| 326 |
+
|
| 327 |
+
positive_latents.requires_grad = False
|
| 328 |
+
neutral_latents.requires_grad = False
|
| 329 |
+
unconditional_latents.requires_grad = False
|
| 330 |
+
|
| 331 |
+
loss = prompt_pair.loss(
|
| 332 |
+
target_latents=target_latents,
|
| 333 |
+
positive_latents=positive_latents,
|
| 334 |
+
neutral_latents=neutral_latents,
|
| 335 |
+
unconditional_latents=unconditional_latents,
|
| 336 |
+
)
|
| 337 |
+
|
| 338 |
+
# 1000ๅใใชใใจใใฃใจ0.000...ใซใชใฃใฆใใพใฃใฆ่ฆใ็ฎ็ใซ้ข็ฝใใชใ
|
| 339 |
+
pbar.set_description(f"Loss*1k: {loss.item()*1000:.4f}")
|
| 340 |
+
if config.logging.use_wandb:
|
| 341 |
+
wandb.log(
|
| 342 |
+
{"loss": loss, "iteration": i, "lr": lr_scheduler.get_last_lr()[0]}
|
| 343 |
+
)
|
| 344 |
+
|
| 345 |
+
loss.backward()
|
| 346 |
+
optimizer.step()
|
| 347 |
+
lr_scheduler.step()
|
| 348 |
+
|
| 349 |
+
del (
|
| 350 |
+
positive_latents,
|
| 351 |
+
neutral_latents,
|
| 352 |
+
unconditional_latents,
|
| 353 |
+
target_latents,
|
| 354 |
+
latents,
|
| 355 |
+
)
|
| 356 |
+
flush()
|
| 357 |
+
|
| 358 |
+
# if (
|
| 359 |
+
# i % config.save.per_steps == 0
|
| 360 |
+
# and i != 0
|
| 361 |
+
# and i != config.train.iterations - 1
|
| 362 |
+
# ):
|
| 363 |
+
# print("Saving...")
|
| 364 |
+
# save_path.mkdir(parents=True, exist_ok=True)
|
| 365 |
+
# network.save_weights(
|
| 366 |
+
# save_path / f"{config.save.name}_{i}steps.pt",
|
| 367 |
+
# dtype=save_weight_dtype,
|
| 368 |
+
# )
|
| 369 |
+
|
| 370 |
+
print("Saving...")
|
| 371 |
+
save_path.mkdir(parents=True, exist_ok=True)
|
| 372 |
+
network.save_weights(
|
| 373 |
+
save_path / f"{config.save.name}",
|
| 374 |
+
dtype=save_weight_dtype,
|
| 375 |
+
)
|
| 376 |
+
|
| 377 |
+
del (
|
| 378 |
+
unet,
|
| 379 |
+
noise_scheduler,
|
| 380 |
+
loss,
|
| 381 |
+
optimizer,
|
| 382 |
+
network,
|
| 383 |
+
)
|
| 384 |
+
|
| 385 |
+
flush()
|
| 386 |
+
|
| 387 |
+
print("Done.")
|
| 388 |
+
|
| 389 |
+
|
| 390 |
+
# def main(args):
|
| 391 |
+
# config_file = args.config_file
|
| 392 |
+
|
| 393 |
+
# config = config_util.load_config_from_yaml(config_file)
|
| 394 |
+
# if args.name is not None:
|
| 395 |
+
# config.save.name = args.name
|
| 396 |
+
# attributes = []
|
| 397 |
+
# if args.attributes is not None:
|
| 398 |
+
# attributes = args.attributes.split(',')
|
| 399 |
+
# attributes = [a.strip() for a in attributes]
|
| 400 |
+
|
| 401 |
+
# config.network.alpha = args.alpha
|
| 402 |
+
# config.network.rank = args.rank
|
| 403 |
+
# config.save.name += f'_alpha{args.alpha}'
|
| 404 |
+
# config.save.name += f'_rank{config.network.rank }'
|
| 405 |
+
# config.save.name += f'_{config.network.training_method}'
|
| 406 |
+
# config.save.path += f'/{config.save.name}'
|
| 407 |
+
|
| 408 |
+
# prompts = prompt_util.load_prompts_from_yaml(config.prompts_file, attributes)
|
| 409 |
+
|
| 410 |
+
# device = torch.device(f"cuda:{args.device}")
|
| 411 |
+
# train(config, prompts, device)
|
| 412 |
+
|
| 413 |
+
|
| 414 |
+
def train_xl(target, postive, negative, lr, iterations, config_file, rank, device, attributes,save_name):
|
| 415 |
+
|
| 416 |
+
config = config_util.load_config_from_yaml(config_file)
|
| 417 |
+
randn = torch.randint(1, 10000000, (1,)).item()
|
| 418 |
+
config.save.name = save_name
|
| 419 |
+
|
| 420 |
+
config.train.lr = float(lr)
|
| 421 |
+
config.train.iterations=int(iterations)
|
| 422 |
+
|
| 423 |
+
if attributes is not None:
|
| 424 |
+
attributes = attributes.split(',')
|
| 425 |
+
attributes = [a.strip() for a in attributes]
|
| 426 |
+
config.network.alpha = 1.0
|
| 427 |
+
config.network.rank = rank
|
| 428 |
+
|
| 429 |
+
config.save.path += f'/{config.save.name}'
|
| 430 |
+
|
| 431 |
+
prompts = prompt_util.load_prompts_from_yaml(path=config.prompts_file, target=target, positive=positive, negative=negative, attributes=attributes)
|
| 432 |
+
|
| 433 |
+
device = torch.device(f"cuda:{device}")
|
| 434 |
+
train(config, prompts, device)
|
trainscripts/textsliders/prompt_util.py
CHANGED
|
@@ -148,9 +148,18 @@ class PromptEmbedsPair:
|
|
| 148 |
raise ValueError("action must be erase or enhance")
|
| 149 |
|
| 150 |
|
| 151 |
-
def load_prompts_from_yaml(path, attributes = []):
|
| 152 |
with open(path, "r") as f:
|
| 153 |
prompts = yaml.safe_load(f)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
print(prompts)
|
| 155 |
if len(prompts) == 0:
|
| 156 |
raise ValueError("prompts file is empty")
|
|
|
|
| 148 |
raise ValueError("action must be erase or enhance")
|
| 149 |
|
| 150 |
|
| 151 |
+
def load_prompts_from_yaml(path, target, positive, negative, attributes = []):
|
| 152 |
with open(path, "r") as f:
|
| 153 |
prompts = yaml.safe_load(f)
|
| 154 |
+
new = []
|
| 155 |
+
for prompt in prompts:
|
| 156 |
+
copy_ = copy.deepcopy(prompt)
|
| 157 |
+
copy_['target'] = target
|
| 158 |
+
copy_['positive'] = positive
|
| 159 |
+
copy_['neutral'] = target
|
| 160 |
+
copy_['unconditional'] = negative
|
| 161 |
+
new.append(copy_)
|
| 162 |
+
prompts = new
|
| 163 |
print(prompts)
|
| 164 |
if len(prompts) == 0:
|
| 165 |
raise ValueError("prompts file is empty")
|