agents_course / app.py
Bhanu-Chander-ABB's picture
prompt change
0b83ba2
raw
history blame
41.3 kB
import os
import gradio as gr
import requests
import tempfile
import mimetypes
import base64
import json
import pandas as pd
import datetime
from langchain.tools import tool
from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace
from langchain.agents import initialize_agent, AgentType
from bs4 import BeautifulSoup
import base64
from langchain_openai import ChatOpenAI
import fitz
import yt_dlp
import re
## # Load environment variables from .env file
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# Load the environment variables
HF_ACCESS_KEY = os.getenv('HF_ACCESS_KEY')
WEATHER_API_KEY = os.getenv('WEATHER_API_KEY')
OPENAI_KEY = os.getenv('OPENAI_KEY')
OPENAI_MODEL = os.getenv ('OPENAI_MODEL')
########## ----- DEFINING TOOLS -----##########
# --- TOOL 1: Web Search Tool (DuckDuckGo) ---
@tool
def search_tool(query: str) -> str:
"""Answer general knowledge or current events queries using DuckDuckGo."""
url = f"https://api.duckduckgo.com/?q={query}&format=json&no_html=1"
try:
resp = requests.get(url, timeout=20)
resp.raise_for_status()
data = resp.json()
for key in ["AbstractText", "Answer", "Definition"]:
if data.get(key):
return data[key].split(".")[0]
return "no_answer"
except Exception:
return "error"
# when you use the @tool decorator from langchain.tools, the tool.name and tool.description are automatically extracted from your function
# tool.name is set to the function name (e.g., `search_tool`), and
# tool.description is set to the docstring of the function (the triple-quoted string right under def ...) (e.g., "Answer general knowledge or current events queries using DuckDuckGo.").
# --- TOOL 2: Weather Tool (OpenWeatherMap) ---
@tool
def get_weather(city: str) -> str:
"""Get current temperature in Celsius for a city."""
import os
api_key = os.environ.get("WEATHER_API_KEY")
url = f"https://api.openweathermap.org/data/2.5/weather?q={city}&appid={WEATHER_API_KEY}&units=metric"
try:
resp = requests.get(url, timeout=20)
resp.raise_for_status()
data = resp.json()
return str(round(data["main"]["temp"]))
except Exception:
return "error"
# --- TOOL 3: Calculator Tool ---
@tool
def calculator(expression: str) -> str:
"""Evaluate math expressions."""
try:
allowed = "0123456789+-*/(). "
if not all(c in allowed for c in expression):
return "error"
result = eval(expression, {"__builtins__": None}, {})
return str(result)
except Exception:
return "error"
# --- TOOL 4: Unit Conversion Tool ---
@tool
def convert_units(args: str) -> str:
"""
Convert between metric and imperial units (length, mass, temperature).
Input format: '<value> <from_unit> to <to_unit>', e.g. '10 meters to feet'
"""
try:
parts = args.lower().split()
value = float(parts[0])
from_unit = parts[1]
to_unit = parts[3]
conversions = {
("meters", "feet"): lambda v: v * 3.28084,
("feet", "meters"): lambda v: v / 3.28084,
("kg", "lb"): lambda v: v * 2.20462,
("lb", "kg"): lambda v: v / 2.20462,
("celsius", "fahrenheit"): lambda v: v * 9/5 + 32,
("fahrenheit", "celsius"): lambda v: (v - 32) * 5/9,
}
func = conversions.get((from_unit, to_unit))
if func:
return str(round(func(value), 2))
return "error"
except Exception:
return "error"
# --- TOOL 5: Date & Time Tool ---
@tool
def get_time(input: str) -> str:
"""Get current UTC time as HH:MM."""
return datetime.datetime.utc().strftime("%H:%M")
@tool
def get_date(input: str) -> str:
"""Get current date as YYYY-MM-DD."""
return datetime.datetime.utc().strftime("%Y-%m-%d")
# --- TOOL 6: Wikipedia Summary Tool ---
@tool
def wikipedia_summary(query: str) -> str:
"""
Answer questions from Wikipedia related to world information, facts, sports, olympics, history, facts, general knowledge etc.
"""
# Heuristic: If the query looks data-driven, extract tables/lists
data_keywords = [
"list", "table", "which", "who", "how many", "after", "before", "country", "year", "wikipedia", "winners", "recipients", "participants", "awards", "nationality", "film", "olympics", "sports", "statistics", "events", "year", "rankings"
]
if any(word in query.lower() for word in data_keywords):
# Step 1: Search Wikipedia for the most relevant page
search_url = "https://en.wikipedia.org/w/api.php"
params = {
"action": "query",
"list": "search",
"srsearch": query,
"format": "json"
}
try:
resp = requests.get(search_url, params=params, timeout=15)
resp.raise_for_status()
results = resp.json().get("query", {}).get("search", [])
if not results:
return "no_answer"
page_title = results[0]["title"]
page_url = f"https://en.wikipedia.org/wiki/{page_title.replace(' ', '_')}"
except Exception:
return "error: Could not search Wikipedia"
# Step 2: Fetch the Wikipedia page and extract tables/lists
try:
page_resp = requests.get(page_url, timeout=20)
page_resp.raise_for_status()
soup = BeautifulSoup(page_resp.text, "html.parser")
output = f"Source: {page_url}\n"
# Extract all tables with relevant columns
tables = soup.find_all("table", {"class": ["wikitable", "sortable"]})
found_table = False
for table in tables:
table_str = str(table)
if any(word in table_str.lower() for word in ["winner", "name", "year", "nationality", "country", "recipient", "team"]):
try:
df = pd.read_html(table_str)[0]
output += "\n--- Extracted Table ---\n"
output += df.to_csv(index=False)
found_table = True
except Exception:
continue
# If no relevant table, extract lists
if not found_table:
lists = soup.find_all(['ul', 'ol'])
for lst in lists:
items = lst.find_all('li')
if len(items) > 2:
output += "\n--- Extracted List ---\n"
for item in items:
text = item.get_text(separator=" ", strip=True)
output += f"{text}\n"
break
# Fallback: return the first paragraph if nothing else
if not found_table and "--- Extracted List ---" not in output:
first_p = soup.find("p")
output += first_p.get_text(strip=True)[:500] if first_p else "no_answer"
# Limit output length for LLM context
return output[:3500]
except Exception as e:
return f"error: {e}"
# Otherwise, just return the summary as before
url = f"https://en.wikipedia.org/api/rest_v1/page/summary/{query.replace(' ', '_')}"
try:
resp = requests.get(url, timeout=20)
resp.raise_for_status()
data = resp.json()
return data.get("extract", "no_answer").split(".")[0]
except Exception:
return "error"
# --- TOOL 7: Dictionary Tool ---
@tool
def dictionary_lookup(word: str) -> str:
"""Get the definition of an English word."""
url = f"https://api.dictionaryapi.dev/api/v2/entries/en/{word}"
try:
resp = requests.get(url, timeout=20)
resp.raise_for_status()
data = resp.json()
return data[0]["meanings"][0]["definitions"][0]["definition"]
except Exception:
return "error"
# --- TOOL 8: Currency Conversion Tool ---
@tool
def currency_convert(args: str) -> str:
"""
Convert an amount from one currency to another.
Input format: '<amount> <from_currency> to <to_currency>', e.g. '100 USD to EUR'
"""
try:
parts = args.upper().split()
amount = float(parts[0])
from_currency = parts[1]
to_currency = parts[3]
url = f"https://api.exchangerate.host/convert?from={from_currency}&to={to_currency}&amount={amount}"
resp = requests.get(url, timeout=20)
resp.raise_for_status()
data = resp.json()
return str(round(data["result"], 2))
except Exception:
return "error"
# --- TOOL 9: Image Captioning Tool ---
@tool
def image_caption(image_url: str) -> str:
"""Generate a descriptive caption for an image given its URL."""
api_url = "https://api-inference.huggingface.co/models/Salesforce/blip-image-captioning-base"
headers = {"Authorization": f"Bearer {HF_ACCESS_KEY}"}
payload = {"inputs": image_url}
try:
resp = requests.post(api_url, headers=headers, json=payload, timeout=30)
resp.raise_for_status()
data = resp.json()
return data[0]["generated_text"] if isinstance(data, list) else data.get("generated_text", "no_caption")
except Exception:
return "error"
# --- TOOL 10: Optical Character Recognition (OCR) Tool ---
@tool
def ocr_image(image_url: str) -> str:
"""Extract text from an image given its URL."""
api_url = "https://api-inference.huggingface.co/models/impira/layoutlm-document-qa"
headers = {"Authorization": f"Bearer {HF_ACCESS_KEY}"}
payload = {"inputs": {"image": image_url, "question": "What text is in the image?"}}
try:
resp = requests.post(api_url, headers=headers, json=payload, timeout=30)
resp.raise_for_status()
data = resp.json()
return data.get("answer", "no_text_found")
except Exception:
return "error"
# --- TOOL 11: Image Classification Tool ---
@tool
def classify_image(image_url: str) -> str:
"""Classify the main object or scene in an image given its URL."""
api_url = "https://api-inference.huggingface.co/models/google/vit-base-patch16-224"
headers = {"Authorization": f"Bearer {HF_ACCESS_KEY}"}
payload = {"inputs": image_url}
try:
resp = requests.post(api_url, headers=headers, json=payload, timeout=30)
resp.raise_for_status()
data = resp.json()
return data[0]["label"] if isinstance(data, list) else data.get("label", "no_label")
except Exception:
return "error"
# --- TOOL 12: Web Scraping Tool ---
@tool
def web_scrape_tool(url: str) -> str:
"""
Scrape the main textual content from a given website URL and return a concise summary or answer.
Input: A valid URL (e.g., 'https://en.wikipedia.org/wiki/Python_(programming_language)')
"""
try:
headers = {
"User-Agent": "Mozilla/5.0 (compatible; WebScrapeTool/1.0)"
}
resp = requests.get(url, headers=headers, timeout=20)
resp.raise_for_status()
soup = BeautifulSoup(resp.text, "html.parser")
# Try to extract main content from common tags
paragraphs = soup.find_all("p")
text = " ".join(p.get_text() for p in paragraphs)
# Limit to first 2000 characters for brevity
return text[:2000] if text else "No textual content found."
except Exception as e:
return f"error: {e}"
# --- TOOL 13: Audio to Text Transcription Tool ---
@tool
def audio_to_text(audio_url: str) -> str:
"""
Transcribe speech from an audio file URL to text using Hugging Face's Whisper model.
Input: A direct link to an audio file (e.g., .mp3, .wav).
Output: The transcribed text.
"""
api_url = "https://api-inference.huggingface.co/models/openai/whisper-large-v3"
headers = {"Authorization": f"Bearer {HF_ACCESS_KEY}"}
try:
# Download the audio file
audio_resp = requests.get(audio_url, timeout=30)
audio_resp.raise_for_status()
audio_bytes = audio_resp.content
# Encode audio as base64 for API
audio_b64 = base64.b64encode(audio_bytes).decode("utf-8")
payload = {
"inputs": audio_b64,
"parameters": {"return_timestamps": False}
}
resp = requests.post(api_url, headers=headers, json=payload, timeout=60)
resp.raise_for_status()
data = resp.json()
return data.get("text", "no_answer")
except Exception as e:
return f"error: {e}"
# --- TOOL 14: Python Code Executor Tool ---
@tool
def python_executor(code: str) -> str:
"""
Safely execute simple Python code and return the result if the code is in the question. If the question has .py file attached, use 'python_excel_audio_video_attached_file_tool' tool first.
Only supports expressions and basic statements (no imports, file I/O, or system access).
"""
try:
# Restrict built-ins for safety
allowed_builtins = {"abs": abs, "min": min, "max": max, "sum": sum, "len": len, "range": range}
# Only allow expressions, not statements
result = eval(code, {"__builtins__": allowed_builtins}, {})
return str(result)
except Exception as e:
return f"error: {e}"
# --- TOOL 15: Attachment Processing Tool ---
@tool
def python_excel_audio_video_attached_file_tool(input_str: str) -> str:
"""
Processes an input attachment (audio, image, video, Excel, or Python .py file) and returns extracted text or a summary suitable for LLM input.
This function accepts a JSON string 'input_str' with keys: 'file_bytes' (base64), and 'filename'. So input the file and filename as json strings. For unsupported file types the function returns an error message.
"""
import pandas as pd
try:
# Extract only the JSON object from the input string
match = re.search(r'(\{.*\})', input_str, re.DOTALL)
if match:
input_str = match.group(1)
data = json.loads(input_str)
file_bytes = base64.b64decode(data["file_bytes"])
filename = data["filename"]
except Exception as e:
return f"error: {e}"
# Detect file type
mime_type, _ = mimetypes.guess_type(filename)
if not mime_type:
# Fallback for .py and .csv files
if filename.lower().endswith(".py"):
mime_type = "text/x-python"
elif filename.lower().endswith(".csv"):
mime_type = "text/csv"
elif filename.lower().endswith((".xls", ".xlsx")):
mime_type = "application/vnd.ms-excel"
else:
return "error: Could not determine file type. Skip the file"
# Handle audio files
if mime_type.startswith("audio"):
api_url = "https://api-inference.huggingface.co/models/openai/whisper-large-v3"
headers = {"Authorization": f"Bearer {HF_ACCESS_KEY}"}
files = {"file": (filename, file_bytes)}
try:
resp = requests.post(api_url, headers=headers, files=files, timeout=60)
resp.raise_for_status()
data = resp.json()
transcript = data.get("text", "")
if transcript:
return f"Transcript of the audio: {transcript}"
else:
return "error: No transcript returned."
except Exception as e:
return f"error: {e}"
# Handle image files
elif mime_type.startswith("image"):
image_b64 = base64.b64encode(file_bytes).decode()
return f"Attached image (base64): {image_b64}"
# Handle video files (extract audio, then transcribe)
elif mime_type.startswith("video"):
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=filename.split('.')[-1]) as tmp_video:
tmp_video.write(file_bytes)
tmp_video.flush()
video_path = tmp_video.name
audio_path = video_path + ".wav"
import subprocess
subprocess.run([
"ffmpeg", "-i", video_path, "-vn", "-acodec", "pcm_s16le", "-ar", "16000", "-ac", "1", audio_path
], check=True)
with open(audio_path, "rb") as f:
audio_bytes = f.read()
api_url = "https://api-inference.huggingface.co/models/openai/whisper-large-v3"
headers = {"Authorization": f"Bearer {HF_ACCESS_KEY}"}
files = {"file": ("audio.wav", audio_bytes)}
resp = requests.post(api_url, headers=headers, files=files, timeout=120)
resp.raise_for_status()
data = resp.json()
transcript = data.get("text", "")
if transcript:
return f"Transcript of the video audio: {transcript}"
else:
return "error: No transcript returned from video audio."
except Exception as e:
return f"error: {e}"
# Handle Excel files (.xls, .xlsx, .csv)
elif mime_type in ["application/vnd.ms-excel", "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet", "text/csv"]:
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=filename.split('.')[-1]) as tmp_excel:
tmp_excel.write(file_bytes)
tmp_excel.flush()
excel_path = tmp_excel.name
if filename.lower().endswith(".csv"):
df = pd.read_csv(excel_path)
preview = df.head(500).to_csv(index=False)
return f"CSV file preview (first 5 rows):\n{preview}"
else:
xl = pd.ExcelFile(excel_path)
sheet_names = xl.sheet_names
preview = ""
for sheet in sheet_names:
df = xl.parse(sheet)
preview += f"\nSheet: {sheet}\n{df.head(500).to_csv(index=False)}"
return f"Excel file sheets: {sheet_names}\nPreview (first 3 rows per sheet):{preview}"
except Exception as e:
return f"error: {e}"
# Handle Python files (.py)
elif mime_type == "text/x-python" or filename.lower().endswith(".py"):
try:
code = file_bytes.decode("utf-8", errors="replace")
lines = code.splitlines()
preview = "\n".join(lines[:40])
return f"Python file preview (first 40 lines):\n{preview}"
except Exception as e:
return f"error: {e}"
else:
return "error: Unsupported file type. Please skip the file usage."
# --- TOOL 16: Research Paper Info Extraction Tool ---
@tool
def search_and_extract_research_paper_info(query: str) -> str:
"""
Searches for research papers using the Semantic Scholar API, downloads the top result's PDF,
and extracts the title, authors, abstract, and main sections.
Input: A search query (e.g., topic, paper title, or keywords).
Output: A summary with title, authors, abstract, and main sections from the top result.
"""
try:
# Search for papers using Semantic Scholar API
search_url = "https://api.semanticscholar.org/graph/v1/paper/search"
params = {
"query": query,
"limit": 1,
"fields": "title,authors,abstract,url,openAccessPdf"
}
resp = requests.get(search_url, params=params, timeout=20)
resp.raise_for_status()
data = resp.json()
if not data.get("data"):
return "No papers found for this query."
paper = data["data"][0]
title = paper.get("title", "")
authors = ", ".join([a["name"] for a in paper.get("authors", [])])
abstract = paper.get("abstract", "")
pdf_url = paper.get("openAccessPdf", {}).get("url")
if not pdf_url:
return f"Paper found: {title}\nAuthors: {authors}\nAbstract: {abstract}\n(No open access PDF available.)"
# Download the PDF
pdf_resp = requests.get(pdf_url, timeout=30)
pdf_resp.raise_for_status()
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_pdf:
tmp_pdf.write(pdf_resp.content)
tmp_pdf.flush()
pdf_path = tmp_pdf.name
# Extract text from PDF
doc = fitz.open(pdf_path)
full_text = ""
for page in doc:
full_text += page.get_text("text") + "\n"
# Simple heuristics to extract main sections
lines = full_text.splitlines()
main_sections = ""
in_main = False
for line in lines:
if "introduction" in line.lower():
in_main = True
if in_main:
main_sections += line.strip() + " "
if len(main_sections) > 1000:
break
summary = (
f"Title: {title}\n"
f"Authors: {authors}\n"
f"Abstract: {abstract}\n"
f"Main Sections (excerpt): {main_sections.strip()}"
)
return summary if summary.strip() else "No information extracted."
except Exception as e:
return f"error: {e}"
# --- TOOL 17:Tool for sports, awards, competitions etc. ---
@tool
def sports_awards_historicalfacts_tool(query: str) -> str:
"""
For questions about lists, awards, competitions, or historical facts, this tool searches Wikipedia,
extracts all tables and lists from the most relevant page, and returns them as CSV or plain text.
This gives the LLM enough context to answer complex queries about people, years, nationalities, etc.
"""
# Step 1: Search Wikipedia for the most relevant page
search_url = "https://en.wikipedia.org/w/api.php"
params = {
"action": "query",
"list": "search",
"srsearch": query,
"format": "json"
}
try:
resp = requests.get(search_url, params=params, timeout=15)
resp.raise_for_status()
results = resp.json().get("query", {}).get("search", [])
if not results:
return "no_answer"
page_title = results[0]["title"]
page_url = f"https://en.wikipedia.org/wiki/{page_title.replace(' ', '_')}"
except Exception:
return "error: Could not search Wikipedia"
# Step 2: Fetch the Wikipedia page and extract tables and lists
try:
page_resp = requests.get(page_url, timeout=20)
page_resp.raise_for_status()
soup = BeautifulSoup(page_resp.text, "html.parser")
output = f"Source: {page_url}\n"
# Extract all tables with relevant columns
tables = soup.find_all("table", {"class": ["wikitable", "sortable"]})
found_table = False
for table in tables:
table_str = str(table)
if any(word in table_str.lower() for word in ["winner", "name", "year", "nationality", "country"]):
try:
df = pd.read_html(table_str)[0]
output += "\n--- Extracted Table ---\n"
output += df.to_csv(index=False)
found_table = True
except Exception:
continue
# If no relevant table, extract lists (e.g., <ul> or <ol> with <li>)
if not found_table:
lists = soup.find_all(['ul', 'ol'])
for lst in lists:
items = lst.find_all('li')
if len(items) > 2: # Only consider lists with more than 2 items
output += "\n--- Extracted List ---\n"
for item in items:
text = item.get_text(separator=" ", strip=True)
output += f"{text}\n"
break # Only include the first relevant list
# Fallback: return the first paragraph if nothing else
if not found_table and "--- Extracted List ---" not in output:
first_p = soup.find("p")
output += first_p.get_text(strip=True)[:500] if first_p else "no_answer"
# Limit output length for LLM context
return output[:3500]
except Exception as e:
return f"error: {e}"
# --- TOOL 18: YouTube Transcript Tool ---
@tool
def audio_video_url_transcript_tool(youtube_url: str) -> str:
"""
Given a URL about video or audio, like YouTube video URL, download the audio and return a transcript using Whisper.
"""
api_url = "https://api-inference.huggingface.co/models/openai/whisper-large-v3"
headers = {"Authorization": f"Bearer {HF_ACCESS_KEY}"}
try:
# Download audio from YouTube
with tempfile.TemporaryDirectory() as tmpdir:
ydl_opts = {
'format': 'bestaudio/best',
'outtmpl': f'{tmpdir}/audio.%(ext)s',
'quiet': True,
'noplaylist': True,
'extractaudio': True,
'audioformat': 'wav',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'wav',
'preferredquality': '192',
}],
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info = ydl.extract_info(youtube_url, download=True)
audio_path = ydl.prepare_filename(info).rsplit('.', 1)[0] + '.wav'
# Read audio bytes
with open(audio_path, "rb") as f:
audio_bytes = f.read()
# Encode audio as base64 for API
audio_b64 = base64.b64encode(audio_bytes).decode("utf-8")
payload = {
"inputs": audio_b64,
"parameters": {"return_timestamps": False}
}
resp = requests.post(api_url, headers=headers, json=payload, timeout=120)
resp.raise_for_status()
data = resp.json()
return data.get("text", "no_answer")
except Exception as e:
return f"error: {e}"
##-- Tool Discovery ---
# Use @tool for each function.
# Use get_all_tools() to auto-discover all decorated tools.
# tools_list = get_all_tools()
tools_list = [
python_excel_audio_video_attached_file_tool,
wikipedia_summary,
sports_awards_historicalfacts_tool,
search_and_extract_research_paper_info,
python_executor,
get_weather,
calculator,
convert_units,
get_time,
get_date,
dictionary_lookup,
currency_convert,
image_caption,
ocr_image,
classify_image,
search_tool,
web_scrape_tool,
audio_to_text,
# sports_awards_historicalfacts_tool,
audio_video_url_transcript_tool
]
tool_descriptions = "\n".join(f"- {tool.name}: {tool.description}" for tool in tools_list)
## --
# --- System Prompt for the Agent ---
system_prompt = f"""
You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template: [YOUR FINAL ANSWER].
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings, preferably not more than two lines.
If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise.
If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise.
If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
For each question, follow this format:
Question: the input question you must answer
Thought: your reasoning about what to do next
Action: the action to take, must be one of the tools. If no relevant tools, answer the question directly.
Action Input: the input to the action
Observation: the result of the action
... (repeat Thought/Action/Action Input/Observation as needed)
Final Answer: the answer to the original question, as concise as possible (number, short string, or comma-separated list, no extra explanation).
Rules for YOUR FINAL ANSWER:
If the questions is about 'how many' or 'how many times' or 'how many years' or 'how many people' or 'how many items' or 'how many albums' or 'how many songs' (basically needing quantitative reply), then YOUR FINAL ANSWER should be a number.
If the question is about 'what', 'who', 'where', 'when', 'which', 'why', 'how' or similar, then YOUR FINAL ANSWER should be a short string or a comma separated list of strings.
You also have access to a set of tools, which you can use to answer the question. The available tools with their descriptions are:
{tool_descriptions}
If there is a file (image, audio, or video) attached to the question, you should use the process_attachment tool to process it and follow the instructions below:
- For audio or video attachments, the process_attachment tool will transcribe the audio and return the transcript, which you can use to answer the question.
- For image attachments, the process_attachment tool will return a base64 encoded string of the image. You can use this encoded information to provide answer.
If the question is related to sports, awards, historical facts or similar topic that can be answered from wikipedia, you should use the 'sports_awards_historicalfacts_tool' or if the question is similar or related that can be searched in wikipedia, use the more specific tool 'wikipedia_summary' to fetch relevant page information and answer from it.
In general, you must use tools only if needed for the question and only if the question can be answered by one of the provided tools. Otherwise provide the answer based on your knowledge. You must not use multiple tools in a single call. Don't hallucinate.
If after 3 to 4 iterations also a tool usage is not useful then try to answer directly based on your knowledge. If you cannot answer, respond with "no_answer".
"""
# If your final answer is something like 'there were 5 studio albums published between 2000 and 2009' then modify YOUR FINAL ANSWER as: '5'
# If your final answer is something like 'b, e' then YOUR FINAL ANSWER be: 'b, e'
# system_prompt = f"""
# You are an intelligent assistant with access to the following tools:
# {tool_descriptions}
# For every question, you must do your internal reasoning using the Thought → Action → Observation → Answer process, but your output to the user should be ONLY the final answer as a single value (number, string, or comma-separated list), with no extra explanation, thoughts, actions, or observations.
# **If a tool returns a long text or description (such as from a web scraping tool), you must carefully read and process that output, and extract or identify ONLY the most relevant, concise answer to the user's question, and provide a single string as output. Do not return the full text or irrelevant details.**
# **Your output must be only the answer. Do not include any reasoning, tool calls, or explanations.**
# Examples:
# Q: What is 7 * (3 + 2)?
# Your Output: 35
# Q: What’s the weather in Tokyo?
# Your Output: 22
# Q: What is the capital of France?
# Your Output: Paris
# Q: Which year was python 3.0 released as per the website https://en.wikipedia.org/wiki/Python_(programming_language)?
# (Tool returns a long description about Python.)
# Your Output: 2008
# Q: Convert 10 meters to feet.
# Your Output: 32.81
# Instructions:
# - Always do your internal reasoning (Thought → Action → Observation → Answer) before producing the answer, but DO NOT show this reasoning to the user.
# - Use a tool only if necessary, and don't use multiple tools in a call. Don't use a tool if you can answer directly.
# - Your output must be a single value (number, string, or comma-separated list) with no extra explanation or formatting.
# - If you cannot answer the question or if you couldn't process the input question just answer as "no_answer".
# - Be concise and accurate.
# """
## --- Initialize Hugging Face Model ---
# Generate the chat interface, including the tools
'''
llm = HuggingFaceEndpoint(
repo_id="meta-llama/Llama-3.3-70B-Instruct",
# repo_id="Qwen/Qwen2.5-32B-Instruct",
huggingfacehub_api_token=HF_ACCESS_KEY,
# model_kwargs={'prompt': system_prompt}
# system_prompt=system_prompt,
)
chat_llm = ChatHuggingFace(llm=llm)
'''
chat_llm = ChatOpenAI(
openai_api_key=OPENAI_KEY,
model_name=OPENAI_MODEL,
temperature=0.2,
# max_tokens=10
)
# chat = ChatHuggingFace(llm=llm, verbose=True)
# tools = [search_tool, fetch_weather]
# chat_with_tools = chat.bind_tools(tools)
agent = initialize_agent(
tools=tools_list,
# llm=llm,
llm=chat_llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
agent_kwargs={"system_message": system_prompt},
verbose=True,
max_iterations=7, # Increase as needed
max_execution_time=4000, # Increase as needed
early_stopping_method="generate",
handle_parsing_errors=True
)
## --
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
"""
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
"""
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
# full_prompt = f"{system_prompt}\n Input Question: {question_text}"
# submitted_answer = agent.run(full_prompt)
submitted_answer = agent.run(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
# login_btn = gr.LoginButton()
# login_btn.activate()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
# Launch the Gradio app
demo.launch(debug=True, share=True) #share=True