Bhanu-Chander-ABB commited on
Commit
d0490ec
·
1 Parent(s): 7c48384

Update space

Browse files
Files changed (2) hide show
  1. app.py +438 -48
  2. requirements.txt +8 -1
app.py CHANGED
@@ -1,64 +1,454 @@
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
 
 
 
 
8
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
- response = ""
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
 
 
 
 
 
 
38
 
39
- response += token
40
- yield response
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
 
 
 
 
 
 
42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
  """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
 
 
 
 
 
 
 
 
 
 
 
61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
  if __name__ == "__main__":
64
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
  import gradio as gr
3
+ import requests
4
+ import math
5
+ import inspect
6
+ import pandas as pd
7
+ import datetime
8
+ from dotenv import load_dotenv
9
 
10
+ from langchain.tools import tool, get_all_tools
11
+ from typing import TypedDict, Annotated
12
+ from langgraph.graph.message import add_messages
13
+ from langchain_core.messages import AnyMessage, HumanMessage, AIMessage
14
+ from langgraph.prebuilt import ToolNode
15
+ from langgraph.graph import START, StateGraph, END
16
+ from langgraph.prebuilt import tools_condition
17
+ from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace
18
 
19
+ ## # Load environment variables from .env file
20
+ # --- Constants ---
21
+ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
22
 
23
+ # Load the environment variables
24
+ load_dotenv()
25
+ HF_ACCESS_KEY = os.environ.get("HF_ACCESS_KEY")
26
+ WEATHER_API_KEY = os.environ.get("WEATHER_API_KEY")
 
 
 
 
 
27
 
28
+ ########## ----- DEFINING TOOLS -----##########
 
 
 
 
29
 
30
+ # --- TOOL 1: Web Search Tool (DuckDuckGo) ---
31
+ @tool
32
+ def search_tool(query: str) -> str:
33
+ """Answer general knowledge or current events queries using DuckDuckGo."""
34
+ url = f"https://api.duckduckgo.com/?q={query}&format=json&no_html=1"
35
+ try:
36
+ resp = requests.get(url, timeout=20)
37
+ resp.raise_for_status()
38
+ data = resp.json()
39
+ for key in ["AbstractText", "Answer", "Definition"]:
40
+ if data.get(key):
41
+ return data[key].split(".")[0]
42
+ return "no_answer"
43
+ except Exception:
44
+ return "error"
45
 
46
+ # when you use the @tool decorator from langchain.tools, the tool.name and tool.description are automatically extracted from your function
47
+ # tool.name is set to the function name (e.g., `search_tool`), and
48
+ # tool.description is set to the docstring of the function (the triple-quoted string right under def ...) (e.g., "Answer general knowledge or current events queries using DuckDuckGo.").
49
 
50
+ # --- TOOL 2: Weather Tool (OpenWeatherMap) ---
51
+ @tool
52
+ def get_weather(city: str) -> str:
53
+ """Get current temperature in Celsius for a city."""
54
+ import os
55
+ api_key = os.environ.get("WEATHER_API_KEY")
56
+ url = f"https://api.openweathermap.org/data/2.5/weather?q={city}&appid={WEATHER_API_KEY}&units=metric"
57
+ try:
58
+ resp = requests.get(url, timeout=20)
59
+ resp.raise_for_status()
60
+ data = resp.json()
61
+ return str(round(data["main"]["temp"]))
62
+ except Exception:
63
+ return "error"
64
 
65
+ # --- TOOL 3: Calculator Tool ---
66
+ @tool
67
+ def calculator(expression: str) -> str:
68
+ """Evaluate math expressions."""
69
+ try:
70
+ allowed = "0123456789+-*/(). "
71
+ if not all(c in allowed for c in expression):
72
+ return "error"
73
+ result = eval(expression, {"__builtins__": None}, {})
74
+ return str(result)
75
+ except Exception:
76
+ return "error"
77
+
78
+ # --- TOOL 4: Unit Conversion Tool ---
79
+ @tool
80
+ def convert_units(args: str) -> str:
81
+ """
82
+ Convert between metric and imperial units (length, mass, temperature).
83
+ Input format: '<value> <from_unit> to <to_unit>', e.g. '10 meters to feet'
84
+ """
85
+ try:
86
+ parts = args.lower().split()
87
+ value = float(parts[0])
88
+ from_unit = parts[1]
89
+ to_unit = parts[3]
90
+ conversions = {
91
+ ("meters", "feet"): lambda v: v * 3.28084,
92
+ ("feet", "meters"): lambda v: v / 3.28084,
93
+ ("kg", "lb"): lambda v: v * 2.20462,
94
+ ("lb", "kg"): lambda v: v / 2.20462,
95
+ ("celsius", "fahrenheit"): lambda v: v * 9/5 + 32,
96
+ ("fahrenheit", "celsius"): lambda v: (v - 32) * 5/9,
97
+ }
98
+ func = conversions.get((from_unit, to_unit))
99
+ if func:
100
+ return str(round(func(value), 2))
101
+ return "error"
102
+ except Exception:
103
+ return "error"
104
 
105
+ # --- TOOL 5: Date & Time Tool ---
106
+ @tool
107
+ def get_time(_: str = "") -> str:
108
+ """Get current UTC time as HH:MM."""
109
+ return datetime.datetime.utc().strftime("%H:%M")
110
 
111
+ @tool
112
+ def get_date(_: str = "") -> str:
113
+ """Get current date as YYYY-MM-DD."""
114
+ return datetime.datetime.utc().strftime("%Y-%m-%d")
115
+
116
+ # --- TOOL 6: Wikipedia Summary Tool ---
117
+ @tool
118
+ def wikipedia_summary(query: str) -> str:
119
+ """Get a short summary of a topic from Wikipedia."""
120
+ url = f"https://en.wikipedia.org/api/rest_v1/page/summary/{query.replace(' ', '_')}"
121
+ try:
122
+ resp = requests.get(url, timeout=20)
123
+ resp.raise_for_status()
124
+ data = resp.json()
125
+ return data.get("extract", "no_answer").split(".")[0]
126
+ except Exception:
127
+ return "error"
128
+
129
+ # --- TOOL 7: Dictionary Tool ---
130
+ @tool
131
+ def dictionary_lookup(word: str) -> str:
132
+ """Get the definition of an English word."""
133
+ url = f"https://api.dictionaryapi.dev/api/v2/entries/en/{word}"
134
+ try:
135
+ resp = requests.get(url, timeout=20)
136
+ resp.raise_for_status()
137
+ data = resp.json()
138
+ return data[0]["meanings"][0]["definitions"][0]["definition"]
139
+ except Exception:
140
+ return "error"
141
+
142
+ # --- TOOL 8: Currency Conversion Tool ---
143
+ @tool
144
+ def currency_convert(args: str) -> str:
145
+ """
146
+ Convert an amount from one currency to another.
147
+ Input format: '<amount> <from_currency> to <to_currency>', e.g. '100 USD to EUR'
148
+ """
149
+ try:
150
+ parts = args.upper().split()
151
+ amount = float(parts[0])
152
+ from_currency = parts[1]
153
+ to_currency = parts[3]
154
+ url = f"https://api.exchangerate.host/convert?from={from_currency}&to={to_currency}&amount={amount}"
155
+ resp = requests.get(url, timeout=20)
156
+ resp.raise_for_status()
157
+ data = resp.json()
158
+ return str(round(data["result"], 2))
159
+ except Exception:
160
+ return "error"
161
+
162
+ ##-- Tool Discovery ---
163
+ # Use @tool for each function.
164
+ # Use get_all_tools() to auto-discover all decorated tools.
165
+ tools_list = get_all_tools()
166
+
167
+ tool_descriptions = "\n".join(f"- {tool.name}: {tool.description}" for tool in tools_list)
168
+
169
+
170
+ ## --
171
+ # --- System Prompt for the Agent ---
172
+ system_prompt = f"""
173
+ You are an intelligent assistant with access to the following tools:
174
+
175
+ {tool_descriptions}
176
+
177
+ For every question, always follow this process (your internal thinking/execution process):
178
+
179
+ 1. Thought: Reflect step by step on what the user is asking and what information or calculation is needed. Decide if you need to use a tool or can answer directly.
180
+ 2. Action: If a tool is needed, specify which tool to use and with what input. If not, state "No action needed".
181
+ 3. Observation: If you used a tool, report the tool's output here. If not, write "N/A".
182
+ 4. Answer: Give the final answer as a single value (number, string, or comma-separated list), with no extra explanation or units unless requested.
183
+
184
+ Your Final Answer should be just [Answer] and should not include any additional text or explanation. Final Answer should be a single value (number, string, or comma-separated list).
185
+
186
+ Examples:
187
+
188
+ Q: What is 7 * (3 + 2)?
189
+ Thought: The user is asking for a math calculation. I should use the calculator tool.
190
+ Action: calculator("7 * (3 + 2)")
191
+ Observation: 35
192
+ Answer: 35
193
+
194
+ Your Output (Final Answer) for this question should be: '35'.
195
+
196
+ Q: What’s the weather in Tokyo?
197
+ Thought: The user wants the current temperature in Tokyo. I should use the get_weather tool.
198
+ Action: get_weather("Tokyo")
199
+ Observation: 22
200
+ Answer: 22
201
+
202
+ Your Output (Final Answer) for this question should be: '22'.
203
+
204
+ Q: What is the capital of France?
205
+ Thought: The user is asking for a factual answer. I can answer directly.
206
+ Action: No action needed
207
+ Observation: N/A
208
+ Answer: Paris
209
+
210
+ Your Output (Final Answer) for this question should be: 'Paris'.
211
+
212
+ Q: Convert 10 meters to feet.
213
+ Thought: The user wants to convert units. I should use the convert_units tool.
214
+ Action: convert_units("10 meters to feet")
215
+ Observation: 32.81
216
+ Answer: 32.81
217
+
218
+ Your Output (Final Answer) for this question should be: '32.81'.
219
+
220
+ Instructions:
221
+ - Always follow the Thought → Action → Observation → Answer for your internal reasoning and execution before giving final answer.
222
+ - Use a tool only if necessary, and don't use multiple tools in a call. Don't use a tool if you can answer directly without hallucination.
223
+ - Always return your final answer as a single value, with no extra explanation.
224
+ - Be concise and accurate.
225
  """
226
+
227
+ ## --- Initialize Hugging Face Model ---
228
+ # Generate the chat interface, including the tools
229
+ llm = HuggingFaceEndpoint(
230
+ repo_id="Qwen/Qwen2.5-Coder-32B-Instruct",
231
+ huggingfacehub_api_token=HF_ACCESS_KEY,
232
+ system_prompt=system_prompt,
 
 
 
 
 
 
 
 
 
233
  )
234
+ # chat = ChatHuggingFace(llm=llm, verbose=True)
235
+ # tools = [search_tool, fetch_weather]
236
+ # chat_with_tools = chat.bind_tools(tools)
237
+
238
+
239
+ ##
240
+ # --- LANGGRAPH AGENT SETUP ---
241
+
242
+ # Define the state for the graph
243
+ class AgentState(dict):
244
+ pass
245
 
246
+ # Define the main node (agent logic)
247
+ def agent_node(state: AgentState) -> AgentState:
248
+ question = state["question"]
249
+ # The LLM will decide which tool to use based on the prompt and tools
250
+ # response = chat_with_tools.invoke(question) # use this if using ChatHuggingFace with binding option to tools
251
+ response = llm.invoke(question, tools=tools_list)
252
+ return AgentState({"question": question, "answer": response})
253
+
254
+ # Build the graph
255
+ graph = StateGraph(AgentState)
256
+ graph.add_node("agent", agent_node)
257
+ # graph.add_node("tools", ToolNode(tools)) #use this when using ChatHuggingFace with binding option to tools
258
+ # graph.add_edge(START, "agent") #alternatively use the below with set_entry_point
259
+ graph.set_entry_point("agent")
260
+ graph.add_edge("agent", END)
261
+ my_agent = graph.compile()
262
+
263
+ # Or try simply with Graph instead of StateGraph
264
+ # from langgraph.graph import Graph
265
+ # graph = Graph(llm=llm, tools=tools_list)
266
+ # def agent(question: str) -> str:
267
+ # return graph.run(question)
268
+
269
+ ## --- AGENT CALL FUNCTION ---
270
+ def agent(question: str) -> str:
271
+ state = AgentState({"question": question})
272
+ result = my_agent.invoke(state)
273
+ return result["answer"]
274
+
275
+
276
+
277
+ ## --
278
+ def run_and_submit_all( profile: gr.OAuthProfile | None):
279
+ """
280
+ Fetches all questions, runs the BasicAgent on them, submits all answers,
281
+ and displays the results.
282
+ """
283
+ # --- Determine HF Space Runtime URL and Repo URL ---
284
+ space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
285
+
286
+ if profile:
287
+ username= f"{profile.username}"
288
+ print(f"User logged in: {username}")
289
+ else:
290
+ print("User not logged in.")
291
+ return "Please Login to Hugging Face with the button.", None
292
+
293
+ api_url = DEFAULT_API_URL
294
+ questions_url = f"{api_url}/questions"
295
+ submit_url = f"{api_url}/submit"
296
+
297
+ """
298
+ # 1. Instantiate Agent ( modify this part to create your agent)
299
+ try:
300
+ agent = BasicAgent()
301
+ except Exception as e:
302
+ print(f"Error instantiating agent: {e}")
303
+ return f"Error initializing agent: {e}", None
304
+ # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
305
+ """
306
+ agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
307
+ print(agent_code)
308
+
309
+ # 2. Fetch Questions
310
+ print(f"Fetching questions from: {questions_url}")
311
+ try:
312
+ response = requests.get(questions_url, timeout=15)
313
+ response.raise_for_status()
314
+ questions_data = response.json()
315
+ if not questions_data:
316
+ print("Fetched questions list is empty.")
317
+ return "Fetched questions list is empty or invalid format.", None
318
+ print(f"Fetched {len(questions_data)} questions.")
319
+ except requests.exceptions.RequestException as e:
320
+ print(f"Error fetching questions: {e}")
321
+ return f"Error fetching questions: {e}", None
322
+ except requests.exceptions.JSONDecodeError as e:
323
+ print(f"Error decoding JSON response from questions endpoint: {e}")
324
+ print(f"Response text: {response.text[:500]}")
325
+ return f"Error decoding server response for questions: {e}", None
326
+ except Exception as e:
327
+ print(f"An unexpected error occurred fetching questions: {e}")
328
+ return f"An unexpected error occurred fetching questions: {e}", None
329
+
330
+ # 3. Run your Agent
331
+ results_log = []
332
+ answers_payload = []
333
+ print(f"Running agent on {len(questions_data)} questions...")
334
+ for item in questions_data:
335
+ task_id = item.get("task_id")
336
+ question_text = item.get("question")
337
+ if not task_id or question_text is None:
338
+ print(f"Skipping item with missing task_id or question: {item}")
339
+ continue
340
+ try:
341
+ submitted_answer = agent(question_text)
342
+ answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
343
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
344
+ except Exception as e:
345
+ print(f"Error running agent on task {task_id}: {e}")
346
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
347
+
348
+ if not answers_payload:
349
+ print("Agent did not produce any answers to submit.")
350
+ return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
351
+
352
+ # 4. Prepare Submission
353
+ submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
354
+ status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
355
+ print(status_update)
356
+
357
+ # 5. Submit
358
+ print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
359
+ try:
360
+ response = requests.post(submit_url, json=submission_data, timeout=60)
361
+ response.raise_for_status()
362
+ result_data = response.json()
363
+ final_status = (
364
+ f"Submission Successful!\n"
365
+ f"User: {result_data.get('username')}\n"
366
+ f"Overall Score: {result_data.get('score', 'N/A')}% "
367
+ f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
368
+ f"Message: {result_data.get('message', 'No message received.')}"
369
+ )
370
+ print("Submission successful.")
371
+ results_df = pd.DataFrame(results_log)
372
+ return final_status, results_df
373
+ except requests.exceptions.HTTPError as e:
374
+ error_detail = f"Server responded with status {e.response.status_code}."
375
+ try:
376
+ error_json = e.response.json()
377
+ error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
378
+ except requests.exceptions.JSONDecodeError:
379
+ error_detail += f" Response: {e.response.text[:500]}"
380
+ status_message = f"Submission Failed: {error_detail}"
381
+ print(status_message)
382
+ results_df = pd.DataFrame(results_log)
383
+ return status_message, results_df
384
+ except requests.exceptions.Timeout:
385
+ status_message = "Submission Failed: The request timed out."
386
+ print(status_message)
387
+ results_df = pd.DataFrame(results_log)
388
+ return status_message, results_df
389
+ except requests.exceptions.RequestException as e:
390
+ status_message = f"Submission Failed: Network error - {e}"
391
+ print(status_message)
392
+ results_df = pd.DataFrame(results_log)
393
+ return status_message, results_df
394
+ except Exception as e:
395
+ status_message = f"An unexpected error occurred during submission: {e}"
396
+ print(status_message)
397
+ results_df = pd.DataFrame(results_log)
398
+ return status_message, results_df
399
+
400
+
401
+ # --- Build Gradio Interface using Blocks ---
402
+ with gr.Blocks() as demo:
403
+ gr.Markdown("# Basic Agent Evaluation Runner")
404
+ gr.Markdown(
405
+ """
406
+ **Instructions:**
407
+
408
+ 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
409
+ 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
410
+ 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
411
+
412
+ ---
413
+ **Disclaimers:**
414
+ Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
415
+ This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
416
+ """
417
+ )
418
+
419
+ gr.LoginButton()
420
+
421
+ run_button = gr.Button("Run Evaluation & Submit All Answers")
422
+
423
+ status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
424
+ # Removed max_rows=10 from DataFrame constructor
425
+ results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
426
+
427
+ run_button.click(
428
+ fn=run_and_submit_all,
429
+ outputs=[status_output, results_table]
430
+ )
431
 
432
  if __name__ == "__main__":
433
+ print("\n" + "-"*30 + " App Starting " + "-"*30)
434
+ # Check for SPACE_HOST and SPACE_ID at startup for information
435
+ space_host_startup = os.getenv("SPACE_HOST")
436
+ space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
437
+
438
+ if space_host_startup:
439
+ print(f"✅ SPACE_HOST found: {space_host_startup}")
440
+ print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
441
+ else:
442
+ print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
443
+
444
+ if space_id_startup: # Print repo URLs if SPACE_ID is found
445
+ print(f"✅ SPACE_ID found: {space_id_startup}")
446
+ print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
447
+ print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
448
+ else:
449
+ print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
450
+
451
+ print("-"*(60 + len(" App Starting ")) + "\n")
452
+
453
+ print("Launching Gradio Interface for Basic Agent Evaluation...")
454
+ demo.launch(debug=True, share=False)
requirements.txt CHANGED
@@ -1 +1,8 @@
1
- huggingface_hub==0.25.2
 
 
 
 
 
 
 
 
1
+ gradio
2
+ requests
3
+ math
4
+ langchain
5
+ langgraph
6
+ langchainhub
7
+ huggingface-hub
8
+ langchain-huggingface