File size: 7,421 Bytes
5f42812
 
abf26d0
5f42812
0820857
 
 
 
b841197
5f42812
 
 
426a08c
 
 
 
 
 
 
0820857
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
426a08c
 
5f42812
 
 
 
 
 
 
 
b841197
24c2f62
5f42812
 
24c2f62
f5765c8
5f42812
 
 
b841197
c0d1640
 
b75046f
c0d1640
 
 
 
5f42812
0820857
 
c9f0527
0820857
c9f0527
 
 
0820857
c9f0527
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0820857
c9f0527
 
 
 
 
0820857
 
c9f0527
 
 
 
0820857
 
 
 
 
 
 
 
c0d1640
 
 
3ad5e22
c0d1640
 
 
0820857
24c2f62
abf26d0
0820857
 
 
5f42812
0820857
 
b841197
9a80e6e
d200533
0820857
9a80e6e
b841197
9a80e6e
0820857
 
9a80e6e
 
 
 
b841197
0820857
 
c0d1640
 
 
 
 
 
 
 
 
 
b841197
 
c0d1640
b841197
0820857
 
b841197
0820857
b841197
0820857
 
b841197
 
 
 
 
 
 
 
 
0820857
 
 
9a80e6e
b841197
 
 
 
0820857
 
 
5f42812
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import torch
from transformers import AutoProcessor, AutoModelForImageTextToText
from typing import List, Dict
import logging
import os
import subprocess
import json
import tempfile
import time

logger = logging.getLogger(__name__)

def _grab_best_device(use_gpu=True):
    if torch.cuda.device_count() > 0 and use_gpu:
        device = "cuda"
    else:
        device = "cpu"
    return device

def get_video_duration_seconds(video_path: str) -> float:
    """Use ffprobe to get video duration in seconds."""
    cmd = [
        "ffprobe",
        "-v", "quiet",
        "-print_format", "json",
        "-show_format",
        video_path
    ]
    result = subprocess.run(cmd, capture_output=True, text=True)
    info = json.loads(result.stdout)
    return float(info["format"]["duration"])

def format_duration(seconds: int) -> str:
    minutes = seconds // 60
    secs = seconds % 60
    return f"{minutes:02d}:{secs:02d}"

DEVICE = _grab_best_device()

logger.info(f"Using device: {DEVICE}")

class VideoAnalyzer:
    def __init__(self):
        if not torch.cuda.is_available():
            raise RuntimeError("CUDA is required but not available!")
            
        logger.info("Initializing VideoAnalyzer")
        self.model_path = "HuggingFaceTB/SmolVLM2-500M-Video-Instruct"
        logger.info(f"Loading model from {self.model_path} - Using device: {DEVICE}")
        
        # Load processor and model
        self.processor = AutoProcessor.from_pretrained(self.model_path)

        self.model = AutoModelForImageTextToText.from_pretrained(
            self.model_path,
            torch_dtype=torch.bfloat16,
            device_map=DEVICE,
            _attn_implementation="flash_attention_2",
            low_cpu_mem_usage=True,
        ).to(DEVICE)
        
        # Compile model for faster inference
        self.model = torch.compile(self.model, mode="reduce-overhead")
        logger.info(f"Model loaded and compiled on device: {self.model.device}")
        
    def analyze_segment(self, video_path: str, start_time: float) -> str:
        """Analyze a single video segment."""

        messages = [
    {
        "role": "system",
        "content": [
            {
                "type": "text",
                "text": (
                    "You are an AI specialized in video content analysis. "
                    "Your task is to watch the provided video segment and generate a detailed, structured description focusing on the following elements:\n"
                    "1. **People and Their Actions:** Identify all individuals, their appearances, and describe their activities or interactions.\n"
                    "2. **Environment and Setting:** Describe the location, time of day, weather conditions, and any notable background details.\n"
                    "3. **Objects and Their Positions:** List prominent objects, their attributes, and spatial relationships within the scene.\n"
                    "4. **On-Screen Text:** Transcribe any visible text, including signs, labels, or subtitles, and specify their locations.\n"
                    "5. **Key Events and Timing:** Outline significant events, actions, or changes, along with their timestamps.\n\n"
                    "Provide the information in a clear and concise manner, using bullet points or numbered lists where appropriate."
                )
            }
        ]
    },
    {
        "role": "user",
        "content": [
            {"type": "video", "path": video_path},
            {
                "type": "text",
                "text": (
                    "Please analyze the attached video segment and provide a structured description as per the guidelines above. "
                    "If certain elements are not present in the video, you may omit them from your response."
                )
            }
        ]
    }
]


        inputs = self.processor.apply_chat_template(
            messages,
            add_generation_prompt=True,
            tokenize=True,
            return_dict=True,
            return_tensors="pt"
        ).to(DEVICE, dtype=torch.bfloat16)
        
        with torch.inference_mode():
            outputs = self.model.generate(
                **inputs,
                do_sample=True,
                temperature=0.7,
                max_new_tokens=256,
            )
        return self.processor.batch_decode(outputs, skip_special_tokens=True)[0].split("Assistant: ")[-1]

    def process_video(self, video_path: str, segment_length: int = 10) -> List[Dict]:
        try:
            # Create temp directory for segments
            temp_dir = tempfile.mkdtemp()
            
            # Get video duration
            duration = get_video_duration_seconds(video_path)
            total_segments = (int(duration) + segment_length - 1) // segment_length
            logger.info(f"Processing {total_segments} segments for video of length {duration:.2f} seconds")
            
            # Process video in segments
            for segment_idx in range(total_segments):
                segment_start_time = time.time()
                start_time = segment_idx * segment_length
                end_time = min(start_time + segment_length, duration)
                
                # Skip if we've reached the end
                if start_time >= duration:
                    break
                
                # Create segment - Optimized ffmpeg settings
                segment_path = os.path.join(temp_dir, f"segment_{start_time}.mp4")
                cmd = [
                        "ffmpeg",
                        "-y",
                        "-i", video_path,
                        "-ss", str(start_time),
                        "-t", str(segment_length),
                        "-c:v", "libx264",
                        "-preset", "ultrafast",  # Use ultrafast preset for speed
                        "-pix_fmt", "yuv420p",   # Ensure compatible pixel format
                        segment_path
                    ]
                
                ffmpeg_start = time.time()
                subprocess.run(cmd, check=True)
                ffmpeg_time = time.time() - ffmpeg_start
                
                # Analyze segment
                inference_start = time.time()
                description = self.analyze_segment(segment_path, start_time)
                inference_time = time.time() - inference_start
                
                # Add segment info with timestamp
                yield {
                    "timestamp": format_duration(int(start_time)),
                    "description": description,
                    "processing_times": {
                        "ffmpeg": ffmpeg_time,
                        "inference": inference_time,
                        "total": time.time() - segment_start_time
                    }
                }
                
                # Clean up segment file
                os.remove(segment_path)
                
                logger.info(
                    f"Segment {segment_idx + 1}/{total_segments} ({start_time}-{end_time}s) - "
                    f"FFmpeg: {ffmpeg_time:.2f}s, Inference: {inference_time:.2f}s"
                )
            
            # Clean up temp directory
            os.rmdir(temp_dir)
            
        except Exception as e:
            logger.error(f"Error processing video: {str(e)}", exc_info=True)
            raise