Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
import random
|
|
|
|
| 4 |
import json
|
| 5 |
import torch
|
| 6 |
import spaces
|
|
@@ -27,15 +28,6 @@ if torch.cuda.is_available():
|
|
| 27 |
else:
|
| 28 |
torch_dtype = torch.float32
|
| 29 |
|
| 30 |
-
# Initialize models from base SD3.5
|
| 31 |
-
vae = AutoencoderKL.from_pretrained(model_repo_id, subfolder="vae")
|
| 32 |
-
text_encoder = CLIPTextModelWithProjection.from_pretrained(model_repo_id, subfolder="text_encoder")
|
| 33 |
-
text_encoder_2 = CLIPTextModelWithProjection.from_pretrained(model_repo_id, subfolder="text_encoder_2")
|
| 34 |
-
text_encoder_3 = T5EncoderModel.from_pretrained(mdoel_repo_id, subfolder="text_encoder_3")
|
| 35 |
-
tokenizer = CLIPTokenizer.from_pretrained(model_repo_id, subfolder="tokenizer")
|
| 36 |
-
tokenizer_2 = CLIPTokenizer.from_pretrained(model_repo_id, subfolder="tokenizer_2")
|
| 37 |
-
tokenizer_3 = T5Tokenizer.from_pretrained(model_repo_id, subfolder="tokenizer_3")
|
| 38 |
-
|
| 39 |
# Initialize transformer
|
| 40 |
config_file = hf_hub_download(repo_id=model_repo_id, filename="transformer/config.json")
|
| 41 |
with open(config_file, "r") as fp:
|
|
@@ -53,6 +45,20 @@ with safe_open(model_file, framework="pt") as f:
|
|
| 53 |
state_dict = convert_sd3_transformer_checkpoint_to_diffusers(state_dict)
|
| 54 |
transformer.load_state_dict(state_dict)
|
| 55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
# Create pipeline from our models
|
| 57 |
pipe = StableDiffusion3Pipeline(
|
| 58 |
vae=vae,
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
import random
|
| 4 |
+
import gc
|
| 5 |
import json
|
| 6 |
import torch
|
| 7 |
import spaces
|
|
|
|
| 28 |
else:
|
| 29 |
torch_dtype = torch.float32
|
| 30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
# Initialize transformer
|
| 32 |
config_file = hf_hub_download(repo_id=model_repo_id, filename="transformer/config.json")
|
| 33 |
with open(config_file, "r") as fp:
|
|
|
|
| 45 |
state_dict = convert_sd3_transformer_checkpoint_to_diffusers(state_dict)
|
| 46 |
transformer.load_state_dict(state_dict)
|
| 47 |
|
| 48 |
+
# Try to keep memory usage down
|
| 49 |
+
del state_dict
|
| 50 |
+
gc.collect()
|
| 51 |
+
|
| 52 |
+
# Initialize models from base SD3.5
|
| 53 |
+
vae = AutoencoderKL.from_pretrained(model_repo_id, subfolder="vae")
|
| 54 |
+
text_encoder = CLIPTextModelWithProjection.from_pretrained(model_repo_id, subfolder="text_encoder")
|
| 55 |
+
text_encoder_2 = CLIPTextModelWithProjection.from_pretrained(model_repo_id, subfolder="text_encoder_2")
|
| 56 |
+
text_encoder_3 = T5EncoderModel.from_pretrained(model_repo_id, subfolder="text_encoder_3")
|
| 57 |
+
tokenizer = CLIPTokenizer.from_pretrained(model_repo_id, subfolder="tokenizer")
|
| 58 |
+
tokenizer_2 = CLIPTokenizer.from_pretrained(model_repo_id, subfolder="tokenizer_2")
|
| 59 |
+
tokenizer_3 = T5Tokenizer.from_pretrained(model_repo_id, subfolder="tokenizer_3")
|
| 60 |
+
|
| 61 |
+
|
| 62 |
# Create pipeline from our models
|
| 63 |
pipe = StableDiffusion3Pipeline(
|
| 64 |
vae=vae,
|