benjipeng commited on
Commit
936e8f7
·
verified ·
1 Parent(s): e04605e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +44 -82
app.py CHANGED
@@ -1,57 +1,55 @@
1
  import os
2
  import gradio as gr
3
  import requests
4
- import inspect
5
  import pandas as pd
6
 
7
- # (Keep Constants as is)
 
 
8
  # --- Constants ---
9
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
 
10
 
11
- # --- Basic Agent Definition ---
12
- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
13
- class BasicAgent:
14
- def __init__(self):
15
- print("BasicAgent initialized.")
16
- def __call__(self, question: str) -> str:
17
- print(f"Agent received question (first 50 chars): {question[:50]}...")
18
- fixed_answer = "This is a default answer."
19
- print(f"Agent returning fixed answer: {fixed_answer}")
20
- return fixed_answer
21
-
22
- def run_and_submit_all( profile: gr.OAuthProfile | None):
23
  """
24
- Fetches all questions, runs the BasicAgent on them, submits all answers,
25
- and displays the results.
26
  """
27
  # --- Determine HF Space Runtime URL and Repo URL ---
28
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
29
-
30
- if profile:
31
- username= f"{profile.username}"
32
- print(f"User logged in: {username}")
33
- else:
34
- print("User not logged in.")
35
- return "Please Login to Hugging Face with the button.", None
36
-
 
 
 
 
37
  api_url = DEFAULT_API_URL
38
  questions_url = f"{api_url}/questions"
39
  submit_url = f"{api_url}/submit"
40
 
41
- # 1. Instantiate Agent ( modify this part to create your agent)
 
 
42
  try:
43
- agent = BasicAgent()
44
  except Exception as e:
45
- print(f"Error instantiating agent: {e}")
46
- return f"Error initializing agent: {e}", None
47
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
 
48
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
49
- print(agent_code)
50
 
51
  # 2. Fetch Questions
52
  print(f"Fetching questions from: {questions_url}")
53
  try:
54
- response = requests.get(questions_url, timeout=15)
55
  response.raise_for_status()
56
  questions_data = response.json()
57
  if not questions_data:
@@ -59,15 +57,14 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
59
  return "Fetched questions list is empty or invalid format.", None
60
  print(f"Fetched {len(questions_data)} questions.")
61
  except requests.exceptions.RequestException as e:
62
- print(f"Error fetching questions: {e}")
63
- return f"Error fetching questions: {e}", None
 
64
  except requests.exceptions.JSONDecodeError as e:
65
- print(f"Error decoding JSON response from questions endpoint: {e}")
 
66
  print(f"Response text: {response.text[:500]}")
67
- return f"Error decoding server response for questions: {e}", None
68
- except Exception as e:
69
- print(f"An unexpected error occurred fetching questions: {e}")
70
- return f"An unexpected error occurred fetching questions: {e}", None
71
 
72
  # 3. Run your Agent
73
  results_log = []
@@ -88,7 +85,6 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
88
  results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
89
 
90
  if not answers_payload:
91
- print("Agent did not produce any answers to submit.")
92
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
93
 
94
  # 4. Prepare Submission
@@ -123,74 +119,40 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
123
  print(status_message)
124
  results_df = pd.DataFrame(results_log)
125
  return status_message, results_df
126
- except requests.exceptions.Timeout:
127
- status_message = "Submission Failed: The request timed out."
128
- print(status_message)
129
- results_df = pd.DataFrame(results_log)
130
- return status_message, results_df
131
  except requests.exceptions.RequestException as e:
132
  status_message = f"Submission Failed: Network error - {e}"
133
  print(status_message)
134
  results_df = pd.DataFrame(results_log)
135
  return status_message, results_df
136
- except Exception as e:
137
- status_message = f"An unexpected error occurred during submission: {e}"
138
- print(status_message)
139
- results_df = pd.DataFrame(results_log)
140
- return status_message, results_df
141
 
142
 
143
- # --- Build Gradio Interface using Blocks ---
144
  with gr.Blocks() as demo:
145
- gr.Markdown("# Basic Agent Evaluation Runner")
146
  gr.Markdown(
147
  """
148
  **Instructions:**
149
-
150
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
151
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
152
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
153
-
154
  ---
155
- **Disclaimers:**
156
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
157
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
158
  """
159
  )
160
-
161
  gr.LoginButton()
162
 
163
  run_button = gr.Button("Run Evaluation & Submit All Answers")
164
 
165
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
166
- # Removed max_rows=10 from DataFrame constructor
167
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
168
 
169
  run_button.click(
170
  fn=run_and_submit_all,
 
171
  outputs=[status_output, results_table]
172
  )
173
 
174
  if __name__ == "__main__":
175
  print("\n" + "-"*30 + " App Starting " + "-"*30)
176
- # Check for SPACE_HOST and SPACE_ID at startup for information
177
- space_host_startup = os.getenv("SPACE_HOST")
178
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
179
-
180
- if space_host_startup:
181
- print(f"✅ SPACE_HOST found: {space_host_startup}")
182
- print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
183
- else:
184
- print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
185
-
186
- if space_id_startup: # Print repo URLs if SPACE_ID is found
187
- print(f"✅ SPACE_ID found: {space_id_startup}")
188
- print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
189
- print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
190
- else:
191
- print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
192
-
193
- print("-"*(60 + len(" App Starting ")) + "\n")
194
-
195
- print("Launching Gradio Interface for Basic Agent Evaluation...")
196
  demo.launch(debug=True, share=False)
 
1
  import os
2
  import gradio as gr
3
  import requests
 
4
  import pandas as pd
5
 
6
+ # --- Import your new agent ---
7
+ from agent import GeminiAgent
8
+
9
  # --- Constants ---
10
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
11
+ MY_HF_USERNAME = "benjipeng" # Your Hugging Face username
12
 
13
+ def run_and_submit_all(profile: gr.OAuthProfile | None):
 
 
 
 
 
 
 
 
 
 
 
14
  """
15
+ Fetches all questions, runs the GeminiAgent on them, submits all answers,
16
+ and displays the results. This function is restricted to a specific user.
17
  """
18
  # --- Determine HF Space Runtime URL and Repo URL ---
19
+ space_id = os.getenv("SPACE_ID")
20
+
21
+ if not profile:
22
+ return "Please Login to Hugging Face with the button to run the evaluation.", None
23
+
24
+ username = profile.username
25
+ print(f"User logged in: {username}")
26
+
27
+ # --- NEW: Restrict submission to a specific user ---
28
+ if username != MY_HF_USERNAME:
29
+ print(f"Access denied for user: {username}. Allowed user is {MY_HF_USERNAME}.")
30
+ return f"Error: This Space is configured for a specific user. Access denied for '{username}'.", None
31
+
32
  api_url = DEFAULT_API_URL
33
  questions_url = f"{api_url}/questions"
34
  submit_url = f"{api_url}/submit"
35
 
36
+ # 1. Instantiate your GeminiAgent
37
+ # The agent will fail to initialize if the GEMINI_API_KEY secret is not set.
38
+ print("Instantiating agent...")
39
  try:
40
+ agent = GeminiAgent()
41
  except Exception as e:
42
+ error_msg = f"Error initializing agent: {e}"
43
+ print(error_msg)
44
+ return error_msg, None
45
+
46
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
47
+ print(f"Code link for submission: {agent_code}")
48
 
49
  # 2. Fetch Questions
50
  print(f"Fetching questions from: {questions_url}")
51
  try:
52
+ response = requests.get(questions_url, timeout=20)
53
  response.raise_for_status()
54
  questions_data = response.json()
55
  if not questions_data:
 
57
  return "Fetched questions list is empty or invalid format.", None
58
  print(f"Fetched {len(questions_data)} questions.")
59
  except requests.exceptions.RequestException as e:
60
+ error_msg = f"Error fetching questions: {e}"
61
+ print(error_msg)
62
+ return error_msg, None
63
  except requests.exceptions.JSONDecodeError as e:
64
+ error_msg = f"Error decoding server response for questions: {e}"
65
+ print(error_msg)
66
  print(f"Response text: {response.text[:500]}")
67
+ return error_msg, None
 
 
 
68
 
69
  # 3. Run your Agent
70
  results_log = []
 
85
  results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
86
 
87
  if not answers_payload:
 
88
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
89
 
90
  # 4. Prepare Submission
 
119
  print(status_message)
120
  results_df = pd.DataFrame(results_log)
121
  return status_message, results_df
 
 
 
 
 
122
  except requests.exceptions.RequestException as e:
123
  status_message = f"Submission Failed: Network error - {e}"
124
  print(status_message)
125
  results_df = pd.DataFrame(results_log)
126
  return status_message, results_df
 
 
 
 
 
127
 
128
 
129
+ # --- Build Gradio Interface using Blocks (No changes needed here) ---
130
  with gr.Blocks() as demo:
131
+ gr.Markdown("# Gemini Agent Evaluation Runner")
132
  gr.Markdown(
133
  """
134
  **Instructions:**
135
+ 1. This Space is configured to run a Gemini-1.5-Pro based agent.
136
+ 2. Log in to your Hugging Face account using the button below. Submission is restricted to the Space owner.
137
+ 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run the agent, submit answers, and see the score.
 
 
138
  ---
139
+ **Note:** The process can take several minutes as the agent answers each question individually.
 
 
140
  """
141
  )
142
+ # The `gr.LoginButton()` passes the OAuthProfile to any function that accepts it as an argument
143
  gr.LoginButton()
144
 
145
  run_button = gr.Button("Run Evaluation & Submit All Answers")
146
 
147
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
 
148
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
149
 
150
  run_button.click(
151
  fn=run_and_submit_all,
152
+ # The profile object from the LoginButton is automatically passed to the first argument of the function
153
  outputs=[status_output, results_table]
154
  )
155
 
156
  if __name__ == "__main__":
157
  print("\n" + "-"*30 + " App Starting " + "-"*30)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
158
  demo.launch(debug=True, share=False)