Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,57 +1,55 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
-
import inspect
|
5 |
import pandas as pd
|
6 |
|
7 |
-
#
|
|
|
|
|
8 |
# --- Constants ---
|
9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
|
10 |
|
11 |
-
|
12 |
-
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
13 |
-
class BasicAgent:
|
14 |
-
def __init__(self):
|
15 |
-
print("BasicAgent initialized.")
|
16 |
-
def __call__(self, question: str) -> str:
|
17 |
-
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
18 |
-
fixed_answer = "This is a default answer."
|
19 |
-
print(f"Agent returning fixed answer: {fixed_answer}")
|
20 |
-
return fixed_answer
|
21 |
-
|
22 |
-
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
23 |
"""
|
24 |
-
Fetches all questions, runs the
|
25 |
-
and displays the results.
|
26 |
"""
|
27 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
28 |
-
space_id = os.getenv("SPACE_ID")
|
29 |
-
|
30 |
-
if profile:
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
37 |
api_url = DEFAULT_API_URL
|
38 |
questions_url = f"{api_url}/questions"
|
39 |
submit_url = f"{api_url}/submit"
|
40 |
|
41 |
-
# 1. Instantiate
|
|
|
|
|
42 |
try:
|
43 |
-
agent =
|
44 |
except Exception as e:
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
48 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
49 |
-
print(agent_code)
|
50 |
|
51 |
# 2. Fetch Questions
|
52 |
print(f"Fetching questions from: {questions_url}")
|
53 |
try:
|
54 |
-
response = requests.get(questions_url, timeout=
|
55 |
response.raise_for_status()
|
56 |
questions_data = response.json()
|
57 |
if not questions_data:
|
@@ -59,15 +57,14 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
59 |
return "Fetched questions list is empty or invalid format.", None
|
60 |
print(f"Fetched {len(questions_data)} questions.")
|
61 |
except requests.exceptions.RequestException as e:
|
62 |
-
|
63 |
-
|
|
|
64 |
except requests.exceptions.JSONDecodeError as e:
|
65 |
-
|
|
|
66 |
print(f"Response text: {response.text[:500]}")
|
67 |
-
return
|
68 |
-
except Exception as e:
|
69 |
-
print(f"An unexpected error occurred fetching questions: {e}")
|
70 |
-
return f"An unexpected error occurred fetching questions: {e}", None
|
71 |
|
72 |
# 3. Run your Agent
|
73 |
results_log = []
|
@@ -88,7 +85,6 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
88 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
89 |
|
90 |
if not answers_payload:
|
91 |
-
print("Agent did not produce any answers to submit.")
|
92 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
93 |
|
94 |
# 4. Prepare Submission
|
@@ -123,74 +119,40 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
123 |
print(status_message)
|
124 |
results_df = pd.DataFrame(results_log)
|
125 |
return status_message, results_df
|
126 |
-
except requests.exceptions.Timeout:
|
127 |
-
status_message = "Submission Failed: The request timed out."
|
128 |
-
print(status_message)
|
129 |
-
results_df = pd.DataFrame(results_log)
|
130 |
-
return status_message, results_df
|
131 |
except requests.exceptions.RequestException as e:
|
132 |
status_message = f"Submission Failed: Network error - {e}"
|
133 |
print(status_message)
|
134 |
results_df = pd.DataFrame(results_log)
|
135 |
return status_message, results_df
|
136 |
-
except Exception as e:
|
137 |
-
status_message = f"An unexpected error occurred during submission: {e}"
|
138 |
-
print(status_message)
|
139 |
-
results_df = pd.DataFrame(results_log)
|
140 |
-
return status_message, results_df
|
141 |
|
142 |
|
143 |
-
# --- Build Gradio Interface using Blocks ---
|
144 |
with gr.Blocks() as demo:
|
145 |
-
gr.Markdown("#
|
146 |
gr.Markdown(
|
147 |
"""
|
148 |
**Instructions:**
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
153 |
-
|
154 |
---
|
155 |
-
**
|
156 |
-
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
157 |
-
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
158 |
"""
|
159 |
)
|
160 |
-
|
161 |
gr.LoginButton()
|
162 |
|
163 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
164 |
|
165 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
166 |
-
# Removed max_rows=10 from DataFrame constructor
|
167 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
168 |
|
169 |
run_button.click(
|
170 |
fn=run_and_submit_all,
|
|
|
171 |
outputs=[status_output, results_table]
|
172 |
)
|
173 |
|
174 |
if __name__ == "__main__":
|
175 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
176 |
-
# Check for SPACE_HOST and SPACE_ID at startup for information
|
177 |
-
space_host_startup = os.getenv("SPACE_HOST")
|
178 |
-
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
179 |
-
|
180 |
-
if space_host_startup:
|
181 |
-
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
182 |
-
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
183 |
-
else:
|
184 |
-
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
185 |
-
|
186 |
-
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
187 |
-
print(f"✅ SPACE_ID found: {space_id_startup}")
|
188 |
-
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
189 |
-
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
190 |
-
else:
|
191 |
-
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
192 |
-
|
193 |
-
print("-"*(60 + len(" App Starting ")) + "\n")
|
194 |
-
|
195 |
-
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
196 |
demo.launch(debug=True, share=False)
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
|
|
4 |
import pandas as pd
|
5 |
|
6 |
+
# --- Import your new agent ---
|
7 |
+
from agent import GeminiAgent
|
8 |
+
|
9 |
# --- Constants ---
|
10 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
11 |
+
MY_HF_USERNAME = "benjipeng" # Your Hugging Face username
|
12 |
|
13 |
+
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
"""
|
15 |
+
Fetches all questions, runs the GeminiAgent on them, submits all answers,
|
16 |
+
and displays the results. This function is restricted to a specific user.
|
17 |
"""
|
18 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
19 |
+
space_id = os.getenv("SPACE_ID")
|
20 |
+
|
21 |
+
if not profile:
|
22 |
+
return "Please Login to Hugging Face with the button to run the evaluation.", None
|
23 |
+
|
24 |
+
username = profile.username
|
25 |
+
print(f"User logged in: {username}")
|
26 |
+
|
27 |
+
# --- NEW: Restrict submission to a specific user ---
|
28 |
+
if username != MY_HF_USERNAME:
|
29 |
+
print(f"Access denied for user: {username}. Allowed user is {MY_HF_USERNAME}.")
|
30 |
+
return f"Error: This Space is configured for a specific user. Access denied for '{username}'.", None
|
31 |
+
|
32 |
api_url = DEFAULT_API_URL
|
33 |
questions_url = f"{api_url}/questions"
|
34 |
submit_url = f"{api_url}/submit"
|
35 |
|
36 |
+
# 1. Instantiate your GeminiAgent
|
37 |
+
# The agent will fail to initialize if the GEMINI_API_KEY secret is not set.
|
38 |
+
print("Instantiating agent...")
|
39 |
try:
|
40 |
+
agent = GeminiAgent()
|
41 |
except Exception as e:
|
42 |
+
error_msg = f"Error initializing agent: {e}"
|
43 |
+
print(error_msg)
|
44 |
+
return error_msg, None
|
45 |
+
|
46 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
47 |
+
print(f"Code link for submission: {agent_code}")
|
48 |
|
49 |
# 2. Fetch Questions
|
50 |
print(f"Fetching questions from: {questions_url}")
|
51 |
try:
|
52 |
+
response = requests.get(questions_url, timeout=20)
|
53 |
response.raise_for_status()
|
54 |
questions_data = response.json()
|
55 |
if not questions_data:
|
|
|
57 |
return "Fetched questions list is empty or invalid format.", None
|
58 |
print(f"Fetched {len(questions_data)} questions.")
|
59 |
except requests.exceptions.RequestException as e:
|
60 |
+
error_msg = f"Error fetching questions: {e}"
|
61 |
+
print(error_msg)
|
62 |
+
return error_msg, None
|
63 |
except requests.exceptions.JSONDecodeError as e:
|
64 |
+
error_msg = f"Error decoding server response for questions: {e}"
|
65 |
+
print(error_msg)
|
66 |
print(f"Response text: {response.text[:500]}")
|
67 |
+
return error_msg, None
|
|
|
|
|
|
|
68 |
|
69 |
# 3. Run your Agent
|
70 |
results_log = []
|
|
|
85 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
86 |
|
87 |
if not answers_payload:
|
|
|
88 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
89 |
|
90 |
# 4. Prepare Submission
|
|
|
119 |
print(status_message)
|
120 |
results_df = pd.DataFrame(results_log)
|
121 |
return status_message, results_df
|
|
|
|
|
|
|
|
|
|
|
122 |
except requests.exceptions.RequestException as e:
|
123 |
status_message = f"Submission Failed: Network error - {e}"
|
124 |
print(status_message)
|
125 |
results_df = pd.DataFrame(results_log)
|
126 |
return status_message, results_df
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
|
129 |
+
# --- Build Gradio Interface using Blocks (No changes needed here) ---
|
130 |
with gr.Blocks() as demo:
|
131 |
+
gr.Markdown("# Gemini Agent Evaluation Runner")
|
132 |
gr.Markdown(
|
133 |
"""
|
134 |
**Instructions:**
|
135 |
+
1. This Space is configured to run a Gemini-1.5-Pro based agent.
|
136 |
+
2. Log in to your Hugging Face account using the button below. Submission is restricted to the Space owner.
|
137 |
+
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run the agent, submit answers, and see the score.
|
|
|
|
|
138 |
---
|
139 |
+
**Note:** The process can take several minutes as the agent answers each question individually.
|
|
|
|
|
140 |
"""
|
141 |
)
|
142 |
+
# The `gr.LoginButton()` passes the OAuthProfile to any function that accepts it as an argument
|
143 |
gr.LoginButton()
|
144 |
|
145 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
146 |
|
147 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
|
|
148 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
149 |
|
150 |
run_button.click(
|
151 |
fn=run_and_submit_all,
|
152 |
+
# The profile object from the LoginButton is automatically passed to the first argument of the function
|
153 |
outputs=[status_output, results_table]
|
154 |
)
|
155 |
|
156 |
if __name__ == "__main__":
|
157 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
demo.launch(debug=True, share=False)
|