Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,166 +2,149 @@ import os
|
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
import pandas as pd
|
|
|
5 |
|
6 |
# Import your upgraded agent
|
7 |
from agent import GeminiAgent
|
8 |
|
9 |
# --- Constants ---
|
10 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
11 |
-
# This is the security gate. Only this user can run submissions.
|
12 |
MY_HF_USERNAME = "benjipeng"
|
|
|
13 |
|
14 |
-
|
|
|
15 |
"""
|
16 |
-
Fetches
|
17 |
-
|
18 |
-
provides file context to the agent.
|
19 |
"""
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
# --- User Authentication and Authorization ---
|
24 |
-
if not profile:
|
25 |
-
return "Please Login to Hugging Face with the button to run the evaluation.", None
|
26 |
-
|
27 |
-
username = profile.username
|
28 |
-
print(f"User logged in: {username}")
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
return f"Error: This Space is configured for a specific user. Access denied for '{username}'.", None
|
33 |
-
|
34 |
-
api_url = DEFAULT_API_URL
|
35 |
-
questions_url = f"{api_url}/questions"
|
36 |
-
submit_url = f"{api_url}/submit"
|
37 |
|
38 |
-
# 1. Instantiate Agent
|
39 |
-
print("Instantiating agent...")
|
40 |
try:
|
41 |
-
|
42 |
-
except Exception as e:
|
43 |
-
error_msg = f"Error initializing agent: {e}"
|
44 |
-
print(error_msg)
|
45 |
-
return error_msg, None
|
46 |
-
|
47 |
-
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
48 |
-
print(f"Code link for submission: {agent_code}")
|
49 |
-
|
50 |
-
# 2. Fetch Questions
|
51 |
-
print(f"Fetching questions from: {questions_url}")
|
52 |
-
try:
|
53 |
-
response = requests.get(questions_url, timeout=20)
|
54 |
response.raise_for_status()
|
55 |
questions_data = response.json()
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
except requests.exceptions.JSONDecodeError as e:
|
65 |
-
error_msg = f"Error decoding server response for questions: {e}"
|
66 |
-
print(error_msg)
|
67 |
-
print(f"Response text: {response.text[:500]}")
|
68 |
-
return error_msg, None
|
69 |
-
|
70 |
-
# 3. Run your Agent (with context injection)
|
71 |
results_log = []
|
72 |
-
|
73 |
-
|
74 |
-
for item in questions_data:
|
75 |
task_id = item.get("task_id")
|
76 |
question_text = item.get("question")
|
77 |
-
|
78 |
-
# This is the key improvement: check if a file is associated with the question
|
79 |
has_file = item.get("file", None) is not None
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
if has_file:
|
87 |
-
modified_question = f"{question_text}\n\n[Agent Note: A file is attached to this question. Use the 'read_file_from_api' tool to access it if needed.]"
|
88 |
-
else:
|
89 |
-
modified_question = question_text
|
90 |
-
|
91 |
try:
|
92 |
-
# Pass BOTH the modified question and the task_id to the agent
|
93 |
submitted_answer = agent(modified_question, task_id)
|
94 |
-
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
95 |
-
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
96 |
except Exception as e:
|
97 |
-
|
98 |
-
|
|
|
|
|
99 |
|
100 |
-
|
101 |
-
|
|
|
102 |
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
105 |
-
|
106 |
-
|
|
|
107 |
|
108 |
-
# 5. Submit
|
109 |
-
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
110 |
try:
|
111 |
-
response = requests.post(submit_url, json=submission_data, timeout=
|
112 |
response.raise_for_status()
|
113 |
result_data = response.json()
|
114 |
-
|
115 |
f"Submission Successful!\n"
|
116 |
f"User: {result_data.get('username')}\n"
|
117 |
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
118 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
119 |
f"Message: {result_data.get('message', 'No message received.')}"
|
120 |
)
|
121 |
-
print("Submission successful.")
|
122 |
-
results_df = pd.DataFrame(results_log)
|
123 |
-
return final_status, results_df
|
124 |
except requests.exceptions.HTTPError as e:
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
129 |
-
except requests.exceptions.JSONDecodeError:
|
130 |
-
error_detail += f" Response: {e.response.text[:500]}"
|
131 |
-
status_message = f"Submission Failed: {error_detail}"
|
132 |
-
print(status_message)
|
133 |
-
results_df = pd.DataFrame(results_log)
|
134 |
-
return status_message, results_df
|
135 |
-
except requests.exceptions.RequestException as e:
|
136 |
-
status_message = f"Submission Failed: Network error - {e}"
|
137 |
-
print(status_message)
|
138 |
-
results_df = pd.DataFrame(results_log)
|
139 |
-
return status_message, results_df
|
140 |
|
141 |
# --- Build Gradio Interface using Blocks ---
|
142 |
with gr.Blocks() as demo:
|
143 |
-
gr.Markdown("# Gemini ReAct Agent for GAIA")
|
144 |
gr.Markdown(
|
145 |
"""
|
146 |
-
**
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
**
|
|
|
|
|
152 |
"""
|
153 |
)
|
|
|
154 |
gr.LoginButton()
|
155 |
|
156 |
-
|
|
|
|
|
157 |
|
158 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
159 |
-
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
160 |
|
161 |
run_button.click(
|
162 |
-
fn=
|
|
|
163 |
outputs=[status_output, results_table]
|
164 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
if __name__ == "__main__":
|
167 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
|
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
import pandas as pd
|
5 |
+
import json
|
6 |
|
7 |
# Import your upgraded agent
|
8 |
from agent import GeminiAgent
|
9 |
|
10 |
# --- Constants ---
|
11 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
|
12 |
MY_HF_USERNAME = "benjipeng"
|
13 |
+
ANSWERS_FILE = "answers.json"
|
14 |
|
15 |
+
# --- Logic for Running the Agent ---
|
16 |
+
def run_agent_only(profile: gr.OAuthProfile | None):
|
17 |
"""
|
18 |
+
Fetches questions, runs the agent on them, and saves the answers to a file.
|
19 |
+
This is the long-running part of the process.
|
|
|
20 |
"""
|
21 |
+
if not profile or profile.username != MY_HF_USERNAME:
|
22 |
+
yield "Error: Please log in as the correct user (`benjipeng`) to run the agent.", pd.DataFrame()
|
23 |
+
return
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
print("Starting agent run...")
|
26 |
+
yield "Fetching questions...", pd.DataFrame()
|
|
|
|
|
|
|
|
|
|
|
27 |
|
|
|
|
|
28 |
try:
|
29 |
+
response = requests.get(f"{DEFAULT_API_URL}/questions", timeout=20)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
response.raise_for_status()
|
31 |
questions_data = response.json()
|
32 |
+
except Exception as e:
|
33 |
+
yield f"Error fetching questions: {e}", pd.DataFrame()
|
34 |
+
return
|
35 |
+
|
36 |
+
yield f"Fetched {len(questions_data)} questions. Initializing agent...", pd.DataFrame()
|
37 |
+
agent = GeminiAgent()
|
38 |
+
|
39 |
+
all_answers = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
results_log = []
|
41 |
+
|
42 |
+
for i, item in enumerate(questions_data):
|
|
|
43 |
task_id = item.get("task_id")
|
44 |
question_text = item.get("question")
|
|
|
|
|
45 |
has_file = item.get("file", None) is not None
|
46 |
|
47 |
+
status_message = f"Processing question {i+1}/{len(questions_data)} (Task ID: {task_id})..."
|
48 |
+
yield status_message, pd.DataFrame(results_log)
|
49 |
+
|
50 |
+
modified_question = f"{question_text}\n\n[Agent Note: A file is attached.]" if has_file else question_text
|
51 |
+
|
|
|
|
|
|
|
|
|
|
|
52 |
try:
|
|
|
53 |
submitted_answer = agent(modified_question, task_id)
|
|
|
|
|
54 |
except Exception as e:
|
55 |
+
submitted_answer = f"AGENT ERROR: {e}"
|
56 |
+
|
57 |
+
all_answers.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
58 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
59 |
|
60 |
+
# Save progress incrementally
|
61 |
+
with open(ANSWERS_FILE, 'w') as f:
|
62 |
+
json.dump(all_answers, f, indent=2)
|
63 |
|
64 |
+
yield f"Agent run complete. All {len(all_answers)} answers saved to {ANSWERS_FILE}. Ready to submit.", pd.DataFrame(results_log)
|
65 |
+
|
66 |
+
|
67 |
+
# --- Logic for Submitting Answers ---
|
68 |
+
def submit_saved_answers(profile: gr.OAuthProfile | None):
|
69 |
+
"""
|
70 |
+
Reads the answers from the saved file and submits them to the scoring server.
|
71 |
+
This is the fast part of the process.
|
72 |
+
"""
|
73 |
+
if not profile or profile.username != MY_HF_USERNAME:
|
74 |
+
return "Error: Please log in as the correct user (`benjipeng`) to submit."
|
75 |
+
|
76 |
+
space_id = os.getenv("SPACE_ID")
|
77 |
+
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
78 |
+
username = profile.username
|
79 |
+
|
80 |
+
try:
|
81 |
+
with open(ANSWERS_FILE, 'r') as f:
|
82 |
+
answers_payload = json.load(f)
|
83 |
+
except FileNotFoundError:
|
84 |
+
return f"Error: Answers file '{ANSWERS_FILE}' not found. Please run the agent first."
|
85 |
+
except json.JSONDecodeError:
|
86 |
+
return f"Error: Could not read the answers file. It might be corrupted."
|
87 |
+
|
88 |
+
if not answers_payload:
|
89 |
+
return "Error: Answers file is empty."
|
90 |
+
|
91 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
92 |
+
|
93 |
+
submit_url = f"{DEFAULT_API_URL}/submit"
|
94 |
+
print(f"Submitting {len(answers_payload)} answers for user '{username}'...")
|
95 |
|
|
|
|
|
96 |
try:
|
97 |
+
response = requests.post(submit_url, json=submission_data, timeout=60)
|
98 |
response.raise_for_status()
|
99 |
result_data = response.json()
|
100 |
+
return (
|
101 |
f"Submission Successful!\n"
|
102 |
f"User: {result_data.get('username')}\n"
|
103 |
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
104 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
105 |
f"Message: {result_data.get('message', 'No message received.')}"
|
106 |
)
|
|
|
|
|
|
|
107 |
except requests.exceptions.HTTPError as e:
|
108 |
+
return f"Submission Failed: Server responded with status {e.response.status_code}. Detail: {e.response.text}"
|
109 |
+
except Exception as e:
|
110 |
+
return f"An unexpected error occurred during submission: {e}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
# --- Build Gradio Interface using Blocks ---
|
113 |
with gr.Blocks() as demo:
|
114 |
+
gr.Markdown("# Gemini ReAct Agent for GAIA (Two-Step Submission)")
|
115 |
gr.Markdown(
|
116 |
"""
|
117 |
+
**Step 1: Run Agent & Save Answers**
|
118 |
+
- This is the long process that can take 10-20 minutes.
|
119 |
+
- The agent will answer all 20 questions and save the results to a file.
|
120 |
+
- You will see the progress in the status box and the table below.
|
121 |
+
|
122 |
+
**Step 2: Submit Saved Answers**
|
123 |
+
- Once Step 1 is complete, click this button.
|
124 |
+
- This will be very fast and will send your saved answers to be scored.
|
125 |
"""
|
126 |
)
|
127 |
+
|
128 |
gr.LoginButton()
|
129 |
|
130 |
+
with gr.Row():
|
131 |
+
run_button = gr.Button("Step 1: Run Agent & Save Answers")
|
132 |
+
submit_button = gr.Button("Step 2: Submit Saved Answers")
|
133 |
|
134 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
135 |
+
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True, interactive=False)
|
136 |
|
137 |
run_button.click(
|
138 |
+
fn=run_agent_only,
|
139 |
+
inputs=None, # LoginButton profile is passed implicitly
|
140 |
outputs=[status_output, results_table]
|
141 |
)
|
142 |
+
|
143 |
+
submit_button.click(
|
144 |
+
fn=submit_saved_answers,
|
145 |
+
inputs=None, # LoginButton profile is passed implicitly
|
146 |
+
outputs=[status_output]
|
147 |
+
)
|
148 |
|
149 |
if __name__ == "__main__":
|
150 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|