File size: 2,101 Bytes
00ab1fc
 
5bf3ded
00ab1fc
5bf3ded
 
00ab1fc
5bf3ded
 
 
00ab1fc
 
 
5bf3ded
00ab1fc
 
 
 
 
 
 
 
 
 
 
 
5bf3ded
 
 
 
 
 
00ab1fc
 
5bf3ded
00ab1fc
5bf3ded
 
 
00ab1fc
 
 
 
5bf3ded
00ab1fc
 
 
5bf3ded
00ab1fc
5bf3ded
 
 
 
 
00ab1fc
 
5bf3ded
00ab1fc
5bf3ded
 
 
00ab1fc
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import gradio as gr
from huggingface_hub import InferenceClient
import base64

# 更新为 MiniCPM-Llama3-V-2_5 模型
client = InferenceClient("openbmb/MiniCPM-Llama3-V-2_5")

def encode_image(image_path):
    with open(image_path, "rb") as image_file:
        return base64.b64encode(image_file.read()).decode('utf-8')

def respond(
    message,
    image,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]
    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})
    
    # 处理图片输入
    if image:
        base64_image = encode_image(image.name)
        image_message = f"<image>{base64_image}</image>"
        message = image_message + "\n" + message

    messages.append({"role": "user", "content": message})
    
    response = ""
    for message in client.text_generation(
        prompt=f"{messages}",
        max_new_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.token.text
        response += token
        yield response

demo = gr.Interface(
    respond,
    inputs=[
        gr.Textbox(label="Message"),
        gr.Image(type="filepath", label="Upload Image"),
        gr.State([]),  # for history
        gr.Textbox(value="You are a friendly AI assistant capable of understanding images and text.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
    ],
    outputs=gr.Textbox(label="Response"),
    title="MiniCPM-Llama3-V-2_5 Image and Text Chat",
    description="Upload an image and ask questions about it, or just chat without an image."
)

if __name__ == "__main__":
    demo.launch()