|
import torch |
|
import numpy as np |
|
|
|
|
|
def edm_sampler( |
|
net, |
|
x_N, |
|
conditioning=None, |
|
latents=None, |
|
randn_like=torch.randn_like, |
|
num_steps=18, |
|
sigma_min=0.002, |
|
sigma_max=80, |
|
rho=7, |
|
S_churn=0, |
|
S_min=0, |
|
S_max=float("inf"), |
|
S_noise=1, |
|
): |
|
|
|
sigma_min = max(sigma_min, net.sigma_min) |
|
sigma_max = min(sigma_max, net.sigma_max) |
|
|
|
|
|
step_indices = torch.arange(num_steps, dtype=torch.float64, device=x_N.device) |
|
t_steps = ( |
|
sigma_max ** (1 / rho) |
|
+ step_indices |
|
/ (num_steps - 1) |
|
* (sigma_min ** (1 / rho) - sigma_max ** (1 / rho)) |
|
) ** rho |
|
t_steps = torch.cat( |
|
[net.round_sigma(t_steps), torch.zeros_like(t_steps[:1])] |
|
) |
|
|
|
|
|
x_next = x_N.to(torch.float64) * t_steps[0] |
|
for i, (t_cur, t_next) in enumerate(zip(t_steps[:-1], t_steps[1:])): |
|
x_cur = x_next |
|
|
|
|
|
gamma = ( |
|
min(S_churn / num_steps, np.sqrt(2) - 1) if S_min <= t_cur <= S_max else 0 |
|
) |
|
t_hat = net.round_sigma(t_cur + gamma * t_cur) |
|
x_hat = x_cur + (t_hat**2 - t_cur**2).sqrt() * S_noise * randn_like(x_cur) |
|
|
|
|
|
denoised, latents = net( |
|
x_hat, t_hat.expand(x_cur.shape[0]), conditioning, previous_latents=latents |
|
) |
|
denoised = denoised.to(torch.float64) |
|
d_cur = (x_hat - denoised) / t_hat |
|
x_next = x_hat + (t_next - t_hat) * d_cur |
|
|
|
|
|
if i < num_steps - 1: |
|
denoised, latents = net( |
|
x_next, |
|
t_next.expand(x_cur.shape[0]), |
|
conditioning, |
|
previous_latents=latents, |
|
) |
|
denoised = denoised.to(torch.float64) |
|
d_prime = (x_next - denoised) / t_next |
|
x_next = x_hat + (t_next - t_hat) * (0.5 * d_cur + 0.5 * d_prime) |
|
|
|
return x_next |
|
|