|
import torch |
|
import random |
|
import string |
|
from transformers import AutoTokenizer, T5EncoderModel |
|
from models.pretrained_models import Plonk |
|
from models.samplers.riemannian_flow_sampler import riemannian_flow_sampler |
|
|
|
from models.postprocessing import CartesiantoGPS |
|
|
|
from models.schedulers import ( |
|
SigmoidScheduler, |
|
LinearScheduler, |
|
CosineScheduler, |
|
) |
|
from models.preconditioning import DDPMPrecond |
|
from torchvision import transforms |
|
from transformers import CLIPProcessor, CLIPVisionModel |
|
from utils.image_processing import CenterCrop |
|
import numpy as np |
|
|
|
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") |
|
MODELS = { |
|
"nicolas-dufour/PLONK_YFCC": {"emb_name": "dinov2"}, |
|
"nicolas-dufour/PLONK_OSV_5M": { |
|
"emb_name": "street_clip", |
|
}, |
|
"nicolas-dufour/PLONK_iNaturalist": { |
|
"emb_name": "dinov2", |
|
}, |
|
} |
|
|
|
|
|
def scheduler_fn( |
|
scheduler_type: str, start: float, end: float, tau: float, clip_min: float = 1e-9 |
|
): |
|
if scheduler_type == "sigmoid": |
|
return SigmoidScheduler(start, end, tau, clip_min) |
|
elif scheduler_type == "cosine": |
|
return CosineScheduler(start, end, tau, clip_min) |
|
elif scheduler_type == "linear": |
|
return LinearScheduler(clip_min=clip_min) |
|
else: |
|
raise ValueError(f"Scheduler type {scheduler_type} not supported") |
|
|
|
|
|
class DinoV2FeatureExtractor: |
|
def __init__(self, device=device): |
|
super().__init__() |
|
self.device = device |
|
self.emb_model = torch.hub.load("facebookresearch/dinov2", "dinov2_vitl14_reg") |
|
self.emb_model.eval() |
|
self.emb_model.to(self.device) |
|
self.augmentation = transforms.Compose( |
|
[ |
|
CenterCrop(ratio="1:1"), |
|
transforms.Resize( |
|
336, interpolation=transforms.InterpolationMode.BICUBIC |
|
), |
|
transforms.ToTensor(), |
|
transforms.Normalize( |
|
mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225) |
|
), |
|
] |
|
) |
|
|
|
def __call__(self, batch): |
|
embs = [] |
|
with torch.no_grad(): |
|
for img in batch["img"]: |
|
emb = self.emb_model( |
|
self.augmentation(img).unsqueeze(0).to(self.device) |
|
).squeeze(0) |
|
embs.append(emb) |
|
batch["emb"] = torch.stack(embs) |
|
return batch |
|
|
|
|
|
class StreetClipFeatureExtractor: |
|
def __init__(self, device=device): |
|
self.device = device |
|
self.emb_model = CLIPVisionModel.from_pretrained("geolocal/StreetCLIP").to( |
|
device |
|
) |
|
self.processor = CLIPProcessor.from_pretrained("geolocal/StreetCLIP") |
|
|
|
def __call__(self, batch): |
|
inputs = self.processor(images=batch["img"], return_tensors="pt") |
|
inputs = {k: v.to(self.device) for k, v in inputs.items()} |
|
with torch.no_grad(): |
|
outputs = self.emb_model(**inputs) |
|
embeddings = outputs.last_hidden_state[:, 0] |
|
batch["emb"] = embeddings |
|
return batch |
|
|
|
|
|
def load_prepocessing(model_name, dtype=torch.float32): |
|
if MODELS[model_name]["emb_name"] == "dinov2": |
|
return DinoV2FeatureExtractor() |
|
elif MODELS[model_name]["emb_name"] == "street_clip": |
|
return StreetClipFeatureExtractor() |
|
else: |
|
raise ValueError(f"Embedding model {MODELS[model_name]['emb_name']} not found") |
|
|
|
|
|
class PlonkPipeline: |
|
""" |
|
The CADT2IPipeline class is designed to facilitate the generation of images from text prompts using a pre-trained CAD model. |
|
It integrates various components such as samplers, schedulers, and post-processing techniques to produce high-quality images. |
|
|
|
Initialization: |
|
CADT2IPipeline( |
|
model_path, |
|
sampler="ddim", |
|
scheduler="sigmoid", |
|
postprocessing="sd_1_5_vae", |
|
scheduler_start=-3, |
|
scheduler_end=3, |
|
scheduler_tau=1.1, |
|
device="cuda", |
|
) |
|
|
|
Parameters: |
|
model_path (str): Path to the pre-trained CAD model. |
|
sampler (str): The sampling method to use. Options are "ddim", "ddpm", "dpm", "dpm_2S", "dpm_2M". Default is "ddim". |
|
scheduler (str): The scheduler type to use. Options are "sigmoid", "cosine", "linear". Default is "sigmoid". |
|
postprocessing (str): The post-processing method to use. Options are "consistency-decoder", "sd_1_5_vae". Default is "sd_1_5_vae". |
|
scheduler_start (float): Start value for the scheduler. Default is -3. |
|
scheduler_end (float): End value for the scheduler. Default is 3. |
|
scheduler_tau (float): Tau value for the scheduler. Default is 1.1. |
|
device (str): Device to run the model on. Default is "cuda". |
|
|
|
Methods: |
|
model(*args, **kwargs): |
|
Runs the preconditioning on the network with the provided arguments. |
|
|
|
__call__(...): |
|
Generates images based on the provided conditions and parameters. |
|
|
|
Parameters: |
|
cond (str or list of str): The conditioning text or list of texts. |
|
num_samples (int, optional): Number of samples to generate. If not provided, it is inferred from cond. |
|
x_N (torch.Tensor, optional): Initial noise tensor. If not provided, it is generated. |
|
latents (torch.Tensor, optional): Previous latents. |
|
num_steps (int, optional): Number of steps for the sampler. If not provided, the default is used. |
|
sampler (callable, optional): Custom sampler function. If not provided, the default sampler is used. |
|
scheduler (callable, optional): Custom scheduler function. If not provided, the default scheduler is used. |
|
cfg (float): Classifier-free guidance scale. Default is 15. |
|
guidance_type (str): Type of guidance. Default is "constant". |
|
guidance_start_step (int): Step to start guidance. Default is 0. |
|
generator (torch.Generator, optional): Random number generator. |
|
coherence_value (float): Doherence value for sampling. Default is 1.0. |
|
uncoherence_value (float): Uncoherence value for sampling. Default is 0.0. |
|
unconfident_prompt (str, optional): Unconfident prompt text. |
|
thresholding_type (str): Type of thresholding. Default is "clamp". |
|
clamp_value (float): Clamp value for thresholding. Default is 1.0. |
|
thresholding_percentile (float): Percentile for thresholding. Default is 0.995. |
|
|
|
Returns: |
|
torch.Tensor: The generated image tensor after post-processing. |
|
|
|
to(device): |
|
Moves the model and its components to the specified device. |
|
|
|
Parameters: |
|
device (str): The device to move the model to (e.g., "cuda", "cpu"). |
|
|
|
Returns: |
|
CADT2IPipeline: The pipeline instance with updated device. |
|
|
|
Example Usage: |
|
pipe = CADT2IPipeline( |
|
"nicolas-dufour/", |
|
) |
|
pipe.to("cuda") |
|
image = pipe( |
|
"a beautiful landscape with a river and mountains", |
|
num_samples=4, |
|
) |
|
""" |
|
|
|
def __init__( |
|
self, |
|
model_path, |
|
scheduler="sigmoid", |
|
scheduler_start=-7, |
|
scheduler_end=3, |
|
scheduler_tau=1.0, |
|
device=device, |
|
): |
|
self.network = Plonk.from_pretrained(model_path).to(device) |
|
self.network.requires_grad_(False).eval() |
|
assert scheduler in [ |
|
"sigmoid", |
|
"cosine", |
|
"linear", |
|
], f"Scheduler {scheduler} not supported" |
|
self.scheduler = scheduler_fn( |
|
scheduler, scheduler_start, scheduler_end, scheduler_tau |
|
) |
|
self.cond_preprocessing = load_prepocessing(model_name=model_path) |
|
self.postprocessing = CartesiantoGPS() |
|
self.sampler = riemannian_flow_sampler |
|
self.model_path = model_path |
|
self.preconditioning = DDPMPrecond() |
|
self.device = device |
|
|
|
def model(self, *args, **kwargs): |
|
return self.preconditioning(self.network, *args, **kwargs) |
|
|
|
def __call__( |
|
self, |
|
images, |
|
batch_size=None, |
|
x_N=None, |
|
num_steps=None, |
|
scheduler=None, |
|
cfg=0, |
|
generator=None, |
|
callback=None, |
|
): |
|
"""Sample from the model given conditioning. |
|
|
|
Args: |
|
cond: Conditioning input (image or list of images) |
|
batch_size: Number of samples to generate (inferred from cond if not provided) |
|
x_N: Initial noise tensor (generated if not provided) |
|
num_steps: Number of sampling steps (uses default if not provided) |
|
sampler: Custom sampler function (uses default if not provided) |
|
scheduler: Custom scheduler function (uses default if not provided) |
|
cfg: Classifier-free guidance scale (default 15) |
|
generator: Random number generator |
|
callback: Optional callback function to report progress (step, total_steps) |
|
|
|
Returns: |
|
Sampled GPS coordinates after postprocessing |
|
""" |
|
|
|
shape = [3] |
|
if not isinstance(images, list): |
|
images = [images] |
|
if x_N is None: |
|
if batch_size is None: |
|
if isinstance(images, list): |
|
batch_size = len(images) |
|
else: |
|
batch_size = 1 |
|
x_N = torch.randn( |
|
batch_size, *shape, device=self.device, generator=generator |
|
) |
|
else: |
|
x_N = x_N.to(self.device) |
|
if x_N.ndim == 3: |
|
x_N = x_N.unsqueeze(0) |
|
batch_size = x_N.shape[0] |
|
|
|
|
|
batch = {"y": x_N} |
|
batch["img"] = images |
|
batch = self.cond_preprocessing(batch) |
|
if len(images) > 1: |
|
assert len(images) == batch_size |
|
else: |
|
batch["emb"] = batch["emb"].repeat(batch_size, 1) |
|
|
|
|
|
sampler = self.sampler |
|
if scheduler is None: |
|
scheduler = self.scheduler |
|
|
|
|
|
if num_steps is None: |
|
num_steps = 16 |
|
|
|
|
|
def model_with_progress(*args, **kwargs): |
|
step = kwargs.pop('current_step', 0) |
|
if callback: |
|
callback(step, num_steps) |
|
return self.model(*args, **kwargs) |
|
|
|
output = sampler( |
|
model_with_progress, |
|
batch, |
|
conditioning_keys="emb", |
|
scheduler=scheduler, |
|
num_steps=num_steps, |
|
cfg_rate=cfg, |
|
generator=generator, |
|
callback=callback, |
|
) |
|
|
|
|
|
output = self.postprocessing(output) |
|
|
|
output = np.degrees(output.detach().cpu().numpy()) |
|
return output |
|
|
|
def to(self, device): |
|
self.network.to(device) |
|
self.postprocessing.to(device) |
|
self.device = torch.device(device) |
|
return self |
|
|