|
import sys, os |
|
import json |
|
from PIL import Image |
|
from tqdm import tqdm |
|
from os.path import dirname, join |
|
|
|
sys.path.append(dirname(dirname(__file__))) |
|
|
|
import torch |
|
from transformers import AutoImageProcessor, AutoModel |
|
from transformers import CLIPProcessor, CLIPModel |
|
from transformers import pipeline |
|
|
|
from data.data import osv5m |
|
from json_stream import streamable_list |
|
|
|
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
def load_model_clip(): |
|
model = CLIPModel.from_pretrained("laion/CLIP-ViT-L-14-laion2B-s32B-b82K") |
|
processor = CLIPProcessor.from_pretrained("laion/CLIP-ViT-L-14-laion2B-s32B-b82K") |
|
return processor, model.to(DEVICE) |
|
|
|
|
|
def load_model_dino(): |
|
model = AutoModel.from_pretrained("facebook/dinov2-base") |
|
processor = AutoImageProcessor.from_pretrained("facebook/dinov2-base") |
|
return processor, model.to(DEVICE) |
|
|
|
|
|
def compute_dino(processor, model, x): |
|
inputs = processor(images=x[0], return_tensors="pt", device=DEVICE).to(DEVICE) |
|
outputs = model(**inputs) |
|
last_hidden_states = outputs.last_hidden_state.cpu().numpy() |
|
for i in range(len(x[0])): |
|
yield [last_hidden_states[i].tolist(), x[1][i], x[2][i], x[3][i]] |
|
|
|
|
|
def compute_clip(processor, model, x): |
|
inputs = processor(images=x[0], return_tensors="pt", device=DEVICE).to(DEVICE) |
|
features = model.get_image_features(**inputs) |
|
features /= features.norm(dim=-1, keepdim=True) |
|
features = features.cpu().numpy() |
|
for i in range(len(x[0])): |
|
yield [features[i].tolist(), x[1][i], x[2][i], x[3][i]] |
|
|
|
|
|
def get_batch(dataset, batch_size): |
|
data, lats, lons, ids = [], [], [], [] |
|
for i in range(len(dataset)): |
|
id, lat, lon = dataset.df.iloc[i] |
|
data.append(Image.open(join(dataset.image_folder, f"{int(id)}.jpg"))) |
|
lats.append(lat) |
|
lons.append(lon) |
|
ids.append(id) |
|
if len(data) == batch_size: |
|
yield data, lats, lons, ids |
|
data, lats, lons, ids = [], [], [], [] |
|
|
|
if len(data) > 0: |
|
yield data, lats, lons, ids |
|
data, lats, lons, ids = [], [], [], [] |
|
|
|
|
|
if __name__ == "__main__": |
|
import argparse |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--batch_size", type=int, default=256) |
|
parser.add_argument("--compute_features", action="store_true") |
|
parser.add_argument("--compute_nearest", action="store_true") |
|
parser.add_argument("--json_path", default="features") |
|
parser.add_argument("--which", type=str, default="clip", choices=["clip", "dino"]) |
|
args = parser.parse_args() |
|
json_path = join(args.json_path, args.which) |
|
|
|
os.makedirs(json_path, exist_ok=True) |
|
if args.compute_features: |
|
processor, model = ( |
|
load_model_clip() if args.which == "clip" else load_model_dino() |
|
) |
|
compute_fn = compute_clip if args.which == "clip" else compute_dino |
|
|
|
for split in ["test"]: |
|
|
|
json_path_ = join(json_path, f"{split}.json") |
|
|
|
dataset = OSV5M( |
|
"datasets/osv5m", transforms=None, split=split, dont_split=True |
|
) |
|
|
|
@torch.no_grad() |
|
def compute(batch_size): |
|
for data in tqdm( |
|
get_batch(dataset, batch_size), |
|
total=len(dataset) // batch_size, |
|
desc=f"Computing {split} on {args.which}", |
|
): |
|
features = compute_fn(processor, model, data) |
|
for feature, lat, lon, id in features: |
|
yield feature, lat, lon, id |
|
|
|
data = streamable_list(compute(args.batch_size)) |
|
json.dump(data, open(json_path_, "w"), indent=4) |
|
|
|
if args.compute_nearest: |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
import numpy as np |
|
|
|
train, test = [ |
|
json.load(open(join(json_path, f"{split}.json"), "r")) |
|
for split in ["train", "test"] |
|
] |
|
|
|
def get_neighbors(k=10): |
|
for i, test_data in enumerate(tqdm(test)): |
|
feature, lat, lon, id = test_data |
|
features_train = np.stack( |
|
[np.array(train_data[0]) for train_data in train] |
|
) |
|
cs = np.squeeze( |
|
cosine_similarity(np.expand_dims(feature, axis=0), features_train), |
|
axis=0, |
|
) |
|
i = np.argsort(cs)[-k:][::-1].tolist() |
|
yield [ |
|
{n: x} |
|
for idx in i |
|
for n, x in zip( |
|
["feature", "lat", "lon", "id", "distance"], |
|
train[idx] |
|
+ [ |
|
cs[idx], |
|
], |
|
) |
|
] |
|
|
|
data = streamable_list(get_neighbors()) |
|
json.dump(data, open(join(json_path, "nearest.json"), "w"), indent=4) |
|
|