|
from os.path import join |
|
import PIL |
|
import numpy as np |
|
import pandas as pd |
|
import reverse_geocoder |
|
from torch.utils.data import Dataset |
|
|
|
|
|
class GeoDataset(Dataset): |
|
def __init__(self, image_folder, annotation_file, transformation, tag="image_id"): |
|
self.image_folder = image_folder |
|
gt = pd.read_csv(annotation_file, dtype={tag: str}) |
|
files = set([f.replace(".jpg", "") for f in os.listdir(image_folder)]) |
|
gt = gt[gt[tag].isin(files)] |
|
self.processor = transformation |
|
self.gt = [ |
|
(g[1][tag], g[1]["latitude"], g[1]["longitude"]) for g in gt.iterrows() |
|
] |
|
self.tag = tag |
|
|
|
def fid(self, i): |
|
return self.gt[i][0] |
|
|
|
def latlon(self, i): |
|
return self.gt[i][1] |
|
|
|
def __len__(self): |
|
return len(self.gt) |
|
|
|
def __getitem__(self, idx): |
|
fp = join(self.image_folder, self.gt[idx][0] + ".jpg") |
|
return self.processor(self, idx, fp) |
|
|
|
|
|
def load_plonk(path): |
|
import hydra |
|
from hydra import initialize, compose |
|
from models.module import DiffGeolocalizer |
|
from omegaconf import OmegaConf, open_dict |
|
from os.path import join |
|
from hydra.utils import instantiate |
|
|
|
|
|
|
|
with initialize(version_base=None, config_path="osv5m__best_model"): |
|
cfg = compose(config_name="config", overrides=[]) |
|
|
|
checkpoint = torch.load(join(path, "last.ckpt")) |
|
del checkpoint["state_dict"][ |
|
"model.backbone.clip.vision_model.embeddings.position_ids" |
|
] |
|
torch.save(checkpoint, join(path, "last2.ckpt")) |
|
|
|
with open_dict(cfg): |
|
cfg.checkpoint = join(path, "last2.ckpt") |
|
|
|
cfg.num_classes = 11399 |
|
cfg.model.network.mid.instance.final_dim = cfg.num_classes * 3 |
|
cfg.model.network.head.final_dim = cfg.num_classes * 3 |
|
cfg.model.network.head.instance.quadtree_path = join(path, "quadtree_10_1000.csv") |
|
|
|
cfg.dataset.train_dataset.path = "" |
|
cfg.dataset.val_dataset.path = "" |
|
cfg.dataset.test_dataset.path = "" |
|
cfg.logger.save_dir = "" |
|
cfg.data_dir = "" |
|
cfg.root_dir = "" |
|
cfg.mode = "test" |
|
cfg.model.network.backbone.instance.path = ( |
|
"laion/CLIP-ViT-L-14-DataComp.XL-s13B-b90K" |
|
) |
|
transform = instantiate(cfg.dataset.test_transform) |
|
model = DiffGeolocalizer.load_from_checkpoint( |
|
join(path, "last2.ckpt"), cfg=cfg.model |
|
) |
|
os.remove(join(path, "last2.ckpt")) |
|
|
|
@torch.no_grad() |
|
def inference(model, x): |
|
return x[0], model.model.backbone({"img": x[1].to(model.device)})[:, 0, :].cpu() |
|
|
|
def collate_fn(batch): |
|
return [b[0] for b in batch], torch.stack([b[1] for b in batch], dim=0) |
|
|
|
def operate(self, idx, fp): |
|
proc = self.processor(PIL.Image.open(fp)) |
|
return self.gt[idx][0], proc |
|
|
|
return model, operate, inference, collate_fn |
|
|
|
|
|
def load_clip(which): |
|
|
|
|
|
|
|
|
|
|
|
|
|
from transformers import CLIPProcessor, CLIPModel |
|
|
|
@torch.no_grad() |
|
def inference(model, img): |
|
image_ids = img.data.pop("image_id") |
|
image_input = img.to(model.device) |
|
image_input["pixel_values"] = image_input["pixel_values"].squeeze(1) |
|
features = model.get_image_features(**image_input) |
|
features /= features.norm(dim=-1, keepdim=True) |
|
return image_ids, features.cpu() |
|
|
|
processor = CLIPProcessor.from_pretrained(which) |
|
|
|
def operate(self, idx, fp): |
|
pil = PIL.Image.open(fp) |
|
proc = processor(images=pil, return_tensors="pt") |
|
proc["image_id"] = self.gt[idx][0] |
|
return proc |
|
|
|
return CLIPModel.from_pretrained(which), operate, inference, None |
|
|
|
|
|
def load_dino(which): |
|
|
|
|
|
from transformers import AutoImageProcessor, AutoModel |
|
|
|
@torch.no_grad() |
|
def inference(model, img): |
|
image_ids = img.data.pop("image_id") |
|
image_input = img.to(model.device) |
|
image_input["pixel_values"] = image_input["pixel_values"].squeeze(1) |
|
features = model(**image_input).last_hidden_state[:, 0] |
|
features /= features.norm(dim=-1, keepdim=True) |
|
return image_ids, features.cpu() |
|
|
|
processor = AutoImageProcessor.from_pretrained("facebook/dinov2-large") |
|
|
|
def operate(self, idx, fp): |
|
pil = PIL.Image.open(fp) |
|
proc = processor(images=pil, return_tensors="pt") |
|
proc["image_id"] = self.gt[idx][0] |
|
return proc |
|
|
|
return AutoModel.from_pretrained("facebook/dinov2-large"), operate, inference, None |
|
|
|
|
|
def get_backbone(name): |
|
if os.path.isdir(name): |
|
return load_plonk(name) |
|
elif "clip" in name.lower(): |
|
return load_clip(name) |
|
elif "dino" in name.lower(): |
|
return load_dino(name) |
|
|