|
"""Lamb optimizer.""" |
|
|
|
import torch |
|
from torch.optim import Optimizer |
|
import math |
|
|
|
|
|
class Lamb(Optimizer): |
|
r"""Implements Lamb algorithm. |
|
It has been proposed in `Large Batch Optimization for Deep Learning: Training BERT in 76 minutes`_. |
|
Arguments: |
|
params (iterable): iterable of parameters to optimize or dicts defining |
|
parameter groups |
|
lr (float, optional): learning rate (default: 1e-3) |
|
betas (Tuple[float, float], optional): coefficients used for computing |
|
running averages of gradient and its square (default: (0.9, 0.999)) |
|
eps (float, optional): term added to the denominator to improve |
|
numerical stability (default: 1e-8) |
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) |
|
adam (bool, optional): always use trust ratio = 1, which turns this into |
|
Adam. Useful for comparison purposes. |
|
.. _Large Batch Optimization for Deep Learning: Training BERT in 76 minutes: |
|
https://arxiv.org/abs/1904.00962 |
|
""" |
|
|
|
def __init__( |
|
self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, adam=False |
|
): |
|
if not 0.0 <= lr: |
|
raise ValueError("Invalid learning rate: {}".format(lr)) |
|
if not 0.0 <= eps: |
|
raise ValueError("Invalid epsilon value: {}".format(eps)) |
|
if not 0.0 <= betas[0] < 1.0: |
|
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) |
|
if not 0.0 <= betas[1] < 1.0: |
|
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) |
|
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) |
|
self.adam = adam |
|
super(Lamb, self).__init__(params, defaults) |
|
|
|
def step(self, closure=None): |
|
"""Performs a single optimization step. |
|
Arguments: |
|
closure (callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
""" |
|
loss = None |
|
if closure is not None: |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
for p in group["params"]: |
|
if p.grad is None: |
|
continue |
|
grad = p.grad.data |
|
if grad.is_sparse: |
|
raise RuntimeError( |
|
"Lamb does not support sparse gradients, consider SparseAdam instad." |
|
) |
|
|
|
state = self.state[p] |
|
|
|
|
|
if len(state) == 0: |
|
state["step"] = 0 |
|
|
|
state["exp_avg"] = torch.zeros_like(p.data) |
|
|
|
state["exp_avg_sq"] = torch.zeros_like(p.data) |
|
|
|
exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] |
|
beta1, beta2 = group["betas"] |
|
|
|
state["step"] += 1 |
|
|
|
|
|
|
|
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) |
|
|
|
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) |
|
|
|
|
|
bias_correction1 = 1 - beta1 ** state["step"] |
|
bias_correction2 = 1 - beta2 ** state["step"] |
|
exp_avg_hat = exp_avg / bias_correction1 |
|
exp_avg_sq_hat = exp_avg_sq / bias_correction2 |
|
|
|
step_size = group["lr"] |
|
|
|
do_layer_adaptation = ( |
|
group["layer_adaptation"] |
|
if "layer_adaptation" in group |
|
else group["weight_decay"] > 0 |
|
) |
|
|
|
adam_step = exp_avg_hat / exp_avg_sq_hat.sqrt().add(group["eps"]) |
|
if group["weight_decay"] != 0: |
|
adam_step.add_(p.data, alpha=group["weight_decay"]) |
|
if do_layer_adaptation: |
|
weight_norm = p.data.norm(p=2) |
|
adam_norm = adam_step.norm(p=2) |
|
trust_ratio = torch.where( |
|
weight_norm.ne(0), |
|
torch.where(adam_norm.ne(0), weight_norm / adam_norm, 1), |
|
1, |
|
) |
|
if self.adam or not do_layer_adaptation: |
|
trust_ratio = 1 |
|
|
|
p.data.add_(adam_step, alpha=-step_size * trust_ratio) |
|
return loss |
|
|