Spaces:
Runtime error
Runtime error
| import numpy as np | |
| import random | |
| from xtuner.utils import DEFAULT_IMAGE_TOKEN | |
| GCG_QUESTIONS = [ | |
| DEFAULT_IMAGE_TOKEN + 'Could you please give me a brief description of the image? Please respond with interleaved segmentation masks for the corresponding parts of the answer.', | |
| DEFAULT_IMAGE_TOKEN + 'Can you provide a brief description of the this image? Please output with interleaved segmentation masks for the corresponding phrases.', | |
| DEFAULT_IMAGE_TOKEN + 'Please briefly describe the contents of the image. Please respond with interleaved segmentation masks for the corresponding parts of the answer.', | |
| DEFAULT_IMAGE_TOKEN + 'Could you give a brief explanation of what can be found within this picture? Please output with interleaved segmentation masks for the corresponding phrases.', | |
| DEFAULT_IMAGE_TOKEN + 'Could you give me an brief explanation of this picture? Please respond with interleaved segmentation masks for the corresponding phrases.', | |
| DEFAULT_IMAGE_TOKEN + 'Could you provide me with a briefly analysis of this photo? Please output with interleaved segmentation masks for the corresponding parts of the answer.', | |
| ] | |
| def grand_parse_annotations(example): | |
| annotations = { | |
| 'caption': [], 'masks': [], | |
| 'tokens_positive': [], 'labels': []} | |
| annotations['caption'] = example['dense_caption']['caption'].strip('"').strip() | |
| object_infos = example['dense_caption']['details'] | |
| all_seg_objects_dict = {} | |
| for seg_object_dict in example["objects"]: | |
| all_seg_objects_dict[seg_object_dict['id']] = seg_object_dict | |
| for seg_object_dict in example["floating_objects"]: | |
| all_seg_objects_dict[seg_object_dict['id']] = seg_object_dict | |
| for object_info in object_infos: | |
| ids = object_info["ids"] | |
| if object_info["tokens_positive"] is None: | |
| continue | |
| annotations['labels'].append(object_info["phrase"]) | |
| annotations['tokens_positive'].append(object_info["tokens_positive"]) | |
| _masks = [] | |
| for _id in ids: | |
| _masks.append(all_seg_objects_dict[_id]['segmentation']) | |
| annotations['masks'].append(_masks) | |
| return annotations | |
| def grand_conversation(caption, tokens_positive): | |
| question = random.choice(GCG_QUESTIONS).strip() | |
| # Prepare caption with tags | |
| def tag_caption(caption, tokens): | |
| for start, end in sorted(tokens, key=lambda x: x[0], reverse=True): | |
| caption = f"{caption[:start]}<p> {caption[start:end]} </p> [SEG]{caption[end:]}" | |
| return caption | |
| detailed_answer = tag_caption(caption, tokens_positive) | |
| conversations = [{'from': 'human', 'value': question}, {'from': 'gpt', 'value': detailed_answer}] | |
| return conversations | |
| def grand_preprocess(example): | |
| data_labels = example['labels'] | |
| masks = example['masks'] | |
| caption = example['caption'] | |
| tokens_positive = example['tokens_positive'] | |
| # Function to sort elements based on the start index of each phrase | |
| def sort_by_start_index(items, order): | |
| return [items[i] for i in order] | |
| # Sort phrases based on their appearance in the sentence | |
| phrase_order = sorted(range(len(tokens_positive)), key=lambda x: tokens_positive[x][0]) | |
| masks = sort_by_start_index(masks, phrase_order) | |
| data_labels = sort_by_start_index(data_labels, phrase_order) | |
| tokens_positive = sort_by_start_index(tokens_positive, phrase_order) | |
| conversations = grand_conversation(caption, tokens_positive) | |
| example['conversations'] = conversations | |
| example['labels'] = data_labels | |
| example['masks'] = masks | |
| example['tokens_positive'] = tokens_positive | |
| return example | |
| def glamm_grand_map_fn(example): | |
| # example {'file_name': str, "height": int, "width": int, "image_id": str, caption: "str", | |
| # "groundings": {ground_words: {'token_positives', 'rle_masks', }}} | |
| example = grand_parse_annotations(example) | |
| # example 'labels': [], 'caption': str, 'masks': [], 'tokens_positive': [], 'file_name': image_file | |
| example = grand_preprocess(example) | |
| # do llava preprocess | |
| messages = example['conversations'] | |
| input = '' | |
| conversation = [] | |
| while messages and messages[0]['from'] == 'gpt': | |
| # Skip the first one if it is from gpt | |
| messages = messages[1:] | |
| for msg in messages: | |
| if msg['from'] == 'human': | |
| if DEFAULT_IMAGE_TOKEN in msg['value']: | |
| msg['value'] = msg['value'].replace(DEFAULT_IMAGE_TOKEN, | |
| '').strip() | |
| msg['value'] = DEFAULT_IMAGE_TOKEN + '\n' + msg['value'] | |
| msg['value'] = msg['value'].strip() | |
| input += msg['value'] | |
| elif msg['from'] == 'gpt': | |
| conversation.append({'input': input, 'output': msg['value']}) | |
| input = '' | |
| else: | |
| raise NotImplementedError | |
| example.update({'conversation': conversation}) | |
| return example | |