Spaces:
Runtime error
Runtime error
| import logging | |
| from mmengine.runner.checkpoint import CheckpointLoader | |
| from mmengine.logging.logger import print_log | |
| from huggingface_hub import hf_hub_download | |
| HF_HUB_PREFIX = 'hf-hub:' | |
| def load_checkpoint_with_prefix(filename, prefix=None, map_location='cpu', logger='current'): | |
| """Load partial pretrained model with specific prefix. | |
| Args: | |
| prefix (str): The prefix of sub-module. | |
| filename (str): Accept local filepath, URL, ``torchvision://xxx``, | |
| ``open-mmlab://xxx``. Please refer to ``docs/model_zoo.md`` for | |
| details. | |
| map_location (str | None): Same as :func:`torch.load`. | |
| Defaults to None. | |
| logger: logger | |
| Returns: | |
| dict or OrderedDict: The loaded checkpoint. | |
| """ | |
| if filename.startswith('hf-hub:'): | |
| model_id = filename[len(HF_HUB_PREFIX):] | |
| filename = hf_hub_download(model_id, 'pytorch_model.bin') | |
| checkpoint = CheckpointLoader.load_checkpoint(filename, map_location=map_location, logger=logger) | |
| if 'state_dict' in checkpoint: | |
| state_dict = checkpoint['state_dict'] | |
| elif 'model' in checkpoint: | |
| state_dict = checkpoint['model'] | |
| else: | |
| state_dict = checkpoint | |
| if not prefix: | |
| return state_dict | |
| if not prefix.endswith('.'): | |
| prefix += '.' | |
| prefix_len = len(prefix) | |
| state_dict = { | |
| k[prefix_len:]: v | |
| for k, v in state_dict.items() if k.startswith(prefix) | |
| } | |
| assert state_dict, f'{prefix} is not in the pretrained model' | |
| return state_dict | |
| def load_state_dict_to_model(model, state_dict, logger='current'): | |
| missing_keys, unexpected_keys = model.load_state_dict(state_dict) | |
| if missing_keys: | |
| print_log(missing_keys, logger=logger, level=logging.ERROR) | |
| raise RuntimeError() | |
| if unexpected_keys: | |
| print_log(unexpected_keys, logger=logger, level=logging.ERROR) | |
| raise RuntimeError() | |
| print_log("Loaded checkpoint successfully", logger=logger) | |