Spaces:
Running
Running
initial
Browse files
app.py
ADDED
@@ -0,0 +1,314 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
import random
|
3 |
+
import numpy as np
|
4 |
+
import streamlit as st
|
5 |
+
import plotly.graph_objects as go
|
6 |
+
from sklearn.decomposition import PCA
|
7 |
+
import torch
|
8 |
+
from transformers import AutoTokenizer, AutoModel
|
9 |
+
|
10 |
+
st.set_page_config(page_title="Embedding Visualizer", layout="wide")
|
11 |
+
|
12 |
+
# -----------------------------
|
13 |
+
# Base datasets (dataset names stay lowercase)
|
14 |
+
# -----------------------------
|
15 |
+
BASE_SETS = {
|
16 |
+
"countries": [
|
17 |
+
"Germany","France","Italy","Spain","Portugal","Poland","Netherlands","Belgium","Austria","Switzerland",
|
18 |
+
"Greece","Norway","Sweden","Finland","Denmark","Ireland","Hungary","Czechia","Slovakia","Slovenia",
|
19 |
+
"Romania","Bulgaria","Croatia","Estonia","Latvia"
|
20 |
+
],
|
21 |
+
"animals": [
|
22 |
+
"cat","dog","lion","tiger","bear","wolf","fox","eagle","shark","whale",
|
23 |
+
"zebra","giraffe","elephant","hippopotamus","rhinoceros","kangaroo","panda","otter","seal","dolphin",
|
24 |
+
"chimpanzee","gorilla","leopard","cheetah","lynx"
|
25 |
+
],
|
26 |
+
"furniture": [
|
27 |
+
"armchair","sofa","dining table","coffee table","bookshelf","bed","wardrobe","desk","office chair","dresser",
|
28 |
+
"nightstand","side table","tv stand","loveseat","chaise lounge","bench","hutch","kitchen island","futon","recliner",
|
29 |
+
"ottoman","console table","vanity","buffet","sectional sofa"
|
30 |
+
],
|
31 |
+
"actors": [
|
32 |
+
"Brad Pitt","Angelina Jolie","Meryl Streep","Leonardo DiCaprio","Tom Hanks","Scarlett Johansson","Robert De Niro",
|
33 |
+
"Natalie Portman","Matt Damon","Cate Blanchett","Johnny Depp","Keanu Reeves","Hugh Jackman","Emma Stone","Ryan Gosling",
|
34 |
+
"Jennifer Lawrence","Christian Bale","Charlize Theron","Will Smith","Anne Hathaway","Denzel Washington","Morgan Freeman",
|
35 |
+
"Julia Roberts","George Clooney","Kate Winslet"
|
36 |
+
],
|
37 |
+
"rock groups": [
|
38 |
+
"The Beatles","Rolling Stones","Pink Floyd","Queen","Led Zeppelin","U2","AC/DC","Nirvana","Radiohead","Metallica",
|
39 |
+
"Guns N' Roses","Red Hot Chili Peppers","Coldplay","Pearl Jam","The Police","Aerosmith","Green Day","Foo Fighters",
|
40 |
+
"The Doors","Bon Jovi","Deep Purple","The Who","The Kinks","Fleetwood Mac","The Beach Boys"
|
41 |
+
],
|
42 |
+
"sports": [
|
43 |
+
"soccer","basketball","tennis","baseball","golf","swimming","cycling","running","volleyball","rugby",
|
44 |
+
"boxing","skiing","snowboarding","surfing","skateboarding","karate","judo","fencing","rowing","badminton",
|
45 |
+
"cricket","table tennis","gymnastics","hockey","climbing"
|
46 |
+
],
|
47 |
+
}
|
48 |
+
|
49 |
+
# -----------------------------
|
50 |
+
# Build datasets once per session (base + 3 random mixed)
|
51 |
+
# -----------------------------
|
52 |
+
def make_random_mixed_sets(base: dict, n: int = 3) -> dict:
|
53 |
+
keys = list(base.keys())
|
54 |
+
out = {}
|
55 |
+
for _ in range(n):
|
56 |
+
src = random.sample(keys, 3)
|
57 |
+
items = []
|
58 |
+
for s in src:
|
59 |
+
take = min(7, len(base[s]))
|
60 |
+
items.extend(random.sample(base[s], take))
|
61 |
+
out["/".join(src)] = items[:21]
|
62 |
+
return out
|
63 |
+
|
64 |
+
if "datasets" not in st.session_state:
|
65 |
+
mixed = make_random_mixed_sets(BASE_SETS, 3)
|
66 |
+
st.session_state.datasets = {**BASE_SETS, **mixed}
|
67 |
+
|
68 |
+
DATASETS = st.session_state.datasets # shorthand
|
69 |
+
|
70 |
+
# -----------------------------
|
71 |
+
# Models (transformers)
|
72 |
+
# -----------------------------
|
73 |
+
MODELS = {
|
74 |
+
"all-MiniLM-L6-v2 (384d)": "sentence-transformers/all-MiniLM-L6-v2",
|
75 |
+
"all-mpnet-base-v2 (768d)": "sentence-transformers/all-mpnet-base-v2",
|
76 |
+
"all-roberta-large-v1 (1024d)": "sentence-transformers/all-roberta-large-v1",
|
77 |
+
}
|
78 |
+
|
79 |
+
@st.cache_resource(show_spinner=False)
|
80 |
+
def load_model(model_name: str):
|
81 |
+
tok = AutoTokenizer.from_pretrained(model_name)
|
82 |
+
mdl = AutoModel.from_pretrained(model_name)
|
83 |
+
mdl.eval()
|
84 |
+
return tok, mdl
|
85 |
+
|
86 |
+
@st.cache_data(show_spinner=False)
|
87 |
+
def embed_texts(model_name: str, texts_tuple: tuple):
|
88 |
+
tokenizer, model = load_model(model_name)
|
89 |
+
texts = list(texts_tuple)
|
90 |
+
with torch.no_grad():
|
91 |
+
inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="pt")
|
92 |
+
outputs = model(**inputs)
|
93 |
+
token_embeddings = outputs.last_hidden_state
|
94 |
+
mask = inputs["attention_mask"].unsqueeze(-1).type_as(token_embeddings)
|
95 |
+
summed = (token_embeddings * mask).sum(dim=1)
|
96 |
+
counts = mask.sum(dim=1).clamp(min=1e-9)
|
97 |
+
embeddings = summed / counts # mean pooling
|
98 |
+
return embeddings.cpu().numpy()
|
99 |
+
|
100 |
+
# -----------------------------
|
101 |
+
# Info page (local) via st.query_params
|
102 |
+
# -----------------------------
|
103 |
+
def goto(page: str):
|
104 |
+
st.query_params["page"] = page
|
105 |
+
st.rerun()
|
106 |
+
|
107 |
+
page = st.query_params.get("page", "demo")
|
108 |
+
|
109 |
+
if page == "info":
|
110 |
+
st.title("about this demo")
|
111 |
+
st.write("""
|
112 |
+
# 🧠 Embedding Visualizer – About
|
113 |
+
|
114 |
+
This demo shows how **vector embeddings** can capture the meaning of words and place them in a **numerical space** where related items appear close together.
|
115 |
+
|
116 |
+
You can:
|
117 |
+
- Choose from predefined or mixed datasets (e.g., countries, animals, actors, sports)
|
118 |
+
- Select different embedding models to compare results
|
119 |
+
- Switch between 2D and 3D visualizations
|
120 |
+
- Edit the list of words directly and see the updated projection instantly
|
121 |
+
|
122 |
+
---
|
123 |
+
|
124 |
+
## 📌 What are Vector Embeddings?
|
125 |
+
A **vector embedding** is a way of representing text (words, sentences, or documents) as a list of numbers — a point in a high-dimensional space.
|
126 |
+
These numbers are produced by a trained **language model** that captures semantic meaning.
|
127 |
+
|
128 |
+
In this space:
|
129 |
+
- Words with **similar meanings** end up **near each other**
|
130 |
+
- Dissimilar words are placed **far apart**
|
131 |
+
- The model can detect relationships and groupings that aren’t obvious from spelling or grammar alone
|
132 |
+
|
133 |
+
Example:
|
134 |
+
`"cat"` and `"dog"` will likely be closer to each other than to `"table"`, because the model “knows” they are both animals.
|
135 |
+
|
136 |
+
---
|
137 |
+
|
138 |
+
## 🔍 How the Demo Works
|
139 |
+
1. **Embedding step** – Each word is converted into a high-dimensional vector (e.g., 384, 768, or 1024 dimensions depending on the model).
|
140 |
+
2. **Dimensionality reduction** – Since humans can’t visualize hundreds of dimensions, the vectors are projected to 2D or 3D using **PCA** (Principal Component Analysis).
|
141 |
+
3. **Visualization** – The projected points are plotted, with labels showing the original words.
|
142 |
+
You can rotate the 3D view to explore groupings.
|
143 |
+
|
144 |
+
---
|
145 |
+
|
146 |
+
## 💡 Typical Applications of Embeddings
|
147 |
+
- **Semantic search** – Find relevant results even if exact keywords don’t match
|
148 |
+
- **Clustering & topic discovery** – Group related items automatically
|
149 |
+
- **Recommendations** – Suggest similar products, movies, or articles
|
150 |
+
- **Deduplication** – Detect near-duplicate content
|
151 |
+
- **Analogies** – Explore relationships like *"king" – "man" + "woman" ≈ "queen"*
|
152 |
+
|
153 |
+
---
|
154 |
+
|
155 |
+
## 🚀 Try it Yourself
|
156 |
+
- Pick a dataset or create your own by editing the list
|
157 |
+
- Switch models to compare how the embedding space changes
|
158 |
+
- Toggle between 2D and 3D to explore patterns
|
159 |
+
|
160 |
+
""".strip())
|
161 |
+
if st.button("⬅ back to demo"):
|
162 |
+
goto("demo")
|
163 |
+
st.stop()
|
164 |
+
|
165 |
+
# -----------------------------
|
166 |
+
# Top compact bar
|
167 |
+
# -----------------------------
|
168 |
+
c1, c2, c3, c4 = st.columns([2, 2, 1, 1])
|
169 |
+
|
170 |
+
with c1:
|
171 |
+
if "dataset_name" not in st.session_state:
|
172 |
+
st.session_state.dataset_name = "furniture" if "furniture" in DATASETS else list(DATASETS.keys())[0]
|
173 |
+
dataset_name = st.selectbox("dataset", list(DATASETS.keys()),
|
174 |
+
index=list(DATASETS.keys()).index(st.session_state.dataset_name),
|
175 |
+
key="dataset_name")
|
176 |
+
|
177 |
+
with c2:
|
178 |
+
if "model_name" not in st.session_state:
|
179 |
+
st.session_state.model_name = list(MODELS.values())[0]
|
180 |
+
labels = list(MODELS.keys())
|
181 |
+
rev = {v: k for k, v in MODELS.items()}
|
182 |
+
current_label = rev.get(st.session_state.model_name, labels[0])
|
183 |
+
chosen_label = st.selectbox("embedding model", labels, index=labels.index(current_label))
|
184 |
+
st.session_state.model_name = MODELS[chosen_label]
|
185 |
+
|
186 |
+
with c3:
|
187 |
+
# Single-click fix: stable key and only set index on first render
|
188 |
+
radio_kwargs = dict(options=["2D", "3D"], horizontal=True, key="proj_mode")
|
189 |
+
if "proj_mode" not in st.session_state:
|
190 |
+
radio_kwargs["index"] = 1 # default to 3D initially
|
191 |
+
st.radio("projection", **radio_kwargs)
|
192 |
+
|
193 |
+
with c4:
|
194 |
+
if st.button("ℹ info"):
|
195 |
+
goto("info")
|
196 |
+
|
197 |
+
# -----------------------------
|
198 |
+
# Two-column layout (left = textarea, right = plot)
|
199 |
+
# -----------------------------
|
200 |
+
left, right = st.columns([1, 2], gap="large")
|
201 |
+
|
202 |
+
# Keep textarea synced with dataset selection
|
203 |
+
if "dataset_text" not in st.session_state:
|
204 |
+
st.session_state.dataset_text = "\n".join(DATASETS[st.session_state.dataset_name])
|
205 |
+
|
206 |
+
if "prev_dataset_name" not in st.session_state:
|
207 |
+
st.session_state.prev_dataset_name = st.session_state.dataset_name
|
208 |
+
|
209 |
+
if st.session_state.dataset_name != st.session_state.prev_dataset_name:
|
210 |
+
st.session_state.dataset_text = "\n".join(DATASETS[st.session_state.dataset_name])
|
211 |
+
st.session_state.prev_dataset_name = st.session_state.dataset_name
|
212 |
+
|
213 |
+
with left:
|
214 |
+
st.text_area(
|
215 |
+
label="",
|
216 |
+
key="dataset_text",
|
217 |
+
height=420,
|
218 |
+
help="edit words (one per line). changing dataset above refreshes this box."
|
219 |
+
)
|
220 |
+
words = [w.strip() for w in st.session_state.dataset_text.split("\n") if w.strip()]
|
221 |
+
|
222 |
+
with right:
|
223 |
+
if len(words) < 3:
|
224 |
+
st.info("enter at least three lines to project.")
|
225 |
+
st.stop()
|
226 |
+
|
227 |
+
X = embed_texts(st.session_state.model_name, tuple(words))
|
228 |
+
|
229 |
+
# Capitalized dataset name for the chart title (dataset keys remain lowercase in the UI)
|
230 |
+
chart_title = st.session_state.dataset_name.title()
|
231 |
+
|
232 |
+
if st.session_state.proj_mode == "2D":
|
233 |
+
coords = PCA(n_components=2).fit_transform(X)
|
234 |
+
fig = go.Figure(
|
235 |
+
data=[go.Scatter(
|
236 |
+
x=coords[:, 0], y=coords[:, 1],
|
237 |
+
mode="markers+text",
|
238 |
+
text=words, textposition="top center",
|
239 |
+
marker=dict(size=9),
|
240 |
+
)],
|
241 |
+
layout=go.Layout(
|
242 |
+
xaxis=dict(title="PC1"),
|
243 |
+
yaxis=dict(title="PC2", scaleanchor="x", scaleratio=1),
|
244 |
+
margin=dict(l=0, r=0, b=0, t=40),
|
245 |
+
),
|
246 |
+
)
|
247 |
+
fig.update_layout(
|
248 |
+
title=dict(
|
249 |
+
text=chart_title,
|
250 |
+
x=0.5, xanchor='center', yanchor='top',
|
251 |
+
font=dict(size=20)
|
252 |
+
)
|
253 |
+
)
|
254 |
+
else:
|
255 |
+
coords = PCA(n_components=3).fit_transform(X)
|
256 |
+
fig = go.Figure(
|
257 |
+
data=[go.Scatter3d(
|
258 |
+
x=coords[:, 0], y=coords[:, 1], z=coords[:, 2],
|
259 |
+
mode="markers+text",
|
260 |
+
text=words, textposition="top center",
|
261 |
+
marker=dict(size=6),
|
262 |
+
)],
|
263 |
+
layout=go.Layout(
|
264 |
+
scene=dict(
|
265 |
+
xaxis=dict(showbackground=True, backgroundcolor="rgba(255, 230, 230, 1)"),
|
266 |
+
yaxis=dict(showbackground=True, backgroundcolor="rgba(230, 255, 230, 1)"),
|
267 |
+
zaxis=dict(showbackground=True, backgroundcolor="rgba(230, 230, 255, 1)"),
|
268 |
+
),
|
269 |
+
margin=dict(l=0, r=0, b=0, t=40),
|
270 |
+
),
|
271 |
+
)
|
272 |
+
fig.update_layout(
|
273 |
+
title=dict(
|
274 |
+
text=chart_title,
|
275 |
+
x=0.5, xanchor='center', yanchor='top',
|
276 |
+
font=dict(size=20)
|
277 |
+
)
|
278 |
+
)
|
279 |
+
|
280 |
+
# Simple Plotly rotation: frames + Rotate/Stop buttons
|
281 |
+
frames = []
|
282 |
+
radius = 1.7
|
283 |
+
z_eye = 1.0
|
284 |
+
for ang in range(0, 360, 4):
|
285 |
+
rad = np.deg2rad(ang)
|
286 |
+
frames.append(go.Frame(layout=dict(
|
287 |
+
scene_camera=dict(eye=dict(x=radius*np.cos(rad), y=radius*np.sin(rad), z=z_eye),
|
288 |
+
projection=dict(type="perspective"))
|
289 |
+
)))
|
290 |
+
fig.frames = frames
|
291 |
+
|
292 |
+
fig.update_layout(
|
293 |
+
updatemenus=[dict(
|
294 |
+
type="buttons", showactive=False, x=0.02, y=0.98,
|
295 |
+
buttons=[
|
296 |
+
dict(
|
297 |
+
label="▶ Rotate",
|
298 |
+
method="animate",
|
299 |
+
args=[None, dict(frame=dict(duration=40, redraw=True),
|
300 |
+
transition=dict(duration=0),
|
301 |
+
fromcurrent=True, mode="immediate")]
|
302 |
+
),
|
303 |
+
dict(
|
304 |
+
label="⏹ Stop",
|
305 |
+
method="animate",
|
306 |
+
args=[[None], dict(frame=dict(duration=0, redraw=False),
|
307 |
+
transition=dict(duration=0),
|
308 |
+
mode="immediate")]
|
309 |
+
)
|
310 |
+
]
|
311 |
+
)]
|
312 |
+
)
|
313 |
+
|
314 |
+
st.plotly_chart(fig, use_container_width=True)
|