import os import torch import torch.nn.functional as F from sentence_transformers import SentenceTransformer import pickle import gradio as gr import gdown import requests from tqdm import tqdm import time import re import traceback import logging # Configure logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', handlers=[logging.StreamHandler()]) logger = logging.getLogger("SportsChatbot") def initialize_llm(): from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "deepseek-ai/deepseek-coder-1.3b-instruct" model_dir = "models/deepseek-coder-1.3b-instruct" if not os.path.exists(model_dir): os.makedirs(model_dir, exist_ok=True) logger.info(f"Downloading DeepSeek Coder model to {model_dir}...") tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.float32, # Use float32 for CPU low_cpu_mem_usage=True, ) model.save_pretrained(model_dir) tokenizer.save_pretrained(model_dir) # Fix for attention mask and pad token warnings tokenizer = AutoTokenizer.from_pretrained(model_dir) # Explicitly set pad_token_id if it's not set if tokenizer.pad_token_id is None: logger.info("Setting pad_token_id to eos_token_id") tokenizer.pad_token_id = tokenizer.eos_token_id model = AutoModelForCausalLM.from_pretrained( model_dir, torch_dtype=torch.float32, low_cpu_mem_usage=True ) logger.info(f"Model loaded successfully from {model_dir}") return model, tokenizer def download_file_with_progress(url: str, filename: str): """Download a file with progress bar using requests""" response = requests.get(url, stream=True) total_size = int(response.headers.get('content-length', 0)) with open(filename, 'wb') as file, tqdm( desc=filename, total=total_size, unit='iB', unit_scale=True, unit_divisor=1024, ) as progress_bar: for data in response.iter_content(chunk_size=1024): size = file.write(data) progress_bar.update(size) class SentenceTransformerRetriever: def __init__(self, model_name: str = "sentence-transformers/all-MiniLM-L6-v2", cache_dir: str = "embeddings_cache"): self.device = torch.device("cpu") self.model = SentenceTransformer(model_name, device=str(self.device)) self.doc_embeddings = None self.cache_dir = cache_dir os.makedirs(cache_dir, exist_ok=True) def load_specific_cache(self, cache_filename: str, drive_link: str) -> dict: cache_path = os.path.join(self.cache_dir, cache_filename) if not os.path.exists(cache_path): logger.info(f"Cache file not found. Downloading from Google Drive...") try: gdown.download(drive_link, cache_path, quiet=False) except Exception as e: logger.error(f"Failed to download cache file: {str(e)}") raise Exception(f"Failed to download cache file: {str(e)}") if not os.path.exists(cache_path): raise FileNotFoundError(f"Failed to download cache file to {cache_path}") logger.info(f"Loading cache from: {cache_path}") with open(cache_path, 'rb') as f: return pickle.load(f) def encode(self, texts: list) -> torch.Tensor: embeddings = self.model.encode(texts, convert_to_tensor=True, show_progress_bar=True) return F.normalize(embeddings, p=2, dim=1) def store_embeddings(self, embeddings: torch.Tensor): self.doc_embeddings = embeddings def search(self, query_embedding: torch.Tensor, k: int): if self.doc_embeddings is None: raise ValueError("No document embeddings stored!") similarities = F.cosine_similarity(query_embedding, self.doc_embeddings) scores, indices = torch.topk(similarities, k=min(k, similarities.shape[0])) return indices.cpu(), scores.cpu() class TextProcessor: @staticmethod def extract_relevant_info(documents, query): """Extract only the most relevant parts from documents based on the query""" # Simple keyword-based extraction query_tokens = set(re.findall(r'\b\w+\b', query.lower())) relevant_parts = [] for doc in documents: # Split document into sentences sentences = re.split(r'(?<=[.!?])\s+', doc) for sentence in sentences: # Count matching keywords sentence_tokens = set(re.findall(r'\b\w+\b', sentence.lower())) overlap = len(query_tokens.intersection(sentence_tokens)) # Keep sentences with sufficient keyword overlap or short enough to be important if overlap > 0 or len(sentence) < 100: relevant_parts.append(sentence) # Join the relevant parts result = " ".join(relevant_parts) # If result is too long, truncate more aggressively if len(result) > 1000: # Reduced from 2000 to 1000 result = result[-1000:] return result def truncate_to_token_limit(text, tokenizer, max_tokens=500): """Truncate text to fit within token limit""" tokens = tokenizer.encode(text) if len(tokens) <= max_tokens: return text # Truncate tokens and decode back to text truncated_tokens = tokens[-max_tokens:] return tokenizer.decode(truncated_tokens) def generate_response(model, tokenizer, prompt): """Generate a response using the DeepSeek model""" logger.info("Tokenizing input prompt") inputs = tokenizer(prompt, return_tensors="pt", padding=True) # Add padding=True to ensure attention_mask is set input_length = inputs["input_ids"].shape[1] # Print prompt length for debugging logger.info(f"Prompt length: {input_length} tokens") logger.info("Starting model generation") try: with torch.no_grad(): output = model.generate( inputs["input_ids"], attention_mask=inputs["attention_mask"], # Pass attention_mask max_new_tokens=256, # Generate up to 256 new tokens temperature=0.1, top_p=0.1, top_k=10, repetition_penalty=1.1, do_sample=True, num_return_sequences=1, pad_token_id=tokenizer.pad_token_id, # Set pad_token_id explicitly ) logger.info("Model generation completed successfully") response = tokenizer.decode(output[0], skip_special_tokens=True) # Extract just the response part (after the prompt) generation = response[len(tokenizer.decode(inputs["input_ids"][0], skip_special_tokens=True)):].strip() logger.info(f"Generated response length: {len(generation)} characters") return generation except Exception as e: logger.error(f"Error during generation: {str(e)}") logger.error(traceback.format_exc()) return f"Error during text generation: {str(e)}" def process_query(query: str, cache_data: dict, model, tokenizer) -> str: try: logger.info(f"Processing query: {query}") retriever = SentenceTransformerRetriever() retriever.store_embeddings(cache_data['embeddings']) documents = cache_data['documents'] # Get relevant document indices logger.info("Encoding query and searching for relevant documents") query_embedding = retriever.encode([query]) indices, scores = retriever.search(query_embedding, k=5) # Get only documents with score above threshold selected_indices = [idx for idx, score in zip(indices.tolist(), scores.tolist()) if score > 0.3] logger.info(f"Found {len(selected_indices)} relevant documents with score > 0.3") if not selected_indices: return "I don't have enough information to answer that question accurately." relevant_docs = [documents[idx] for idx in selected_indices] # Extract only the most relevant information from documents logger.info("Extracting relevant information from documents") extracted_text = TextProcessor.extract_relevant_info(relevant_docs, query) # Ensure we don't exceed token limits extracted_text = truncate_to_token_limit(extracted_text, tokenizer, max_tokens=500) if not extracted_text: return "I couldn't find relevant information to answer your question." # Format prompt for DeepSeek model prompt = f"""<问题> Use the following information to answer the sports question. Only use facts mentioned in the given information. Information: {extracted_text} Question: {query} <回答>""" logger.info("Generating response") start_time = time.time() response = generate_response(model, tokenizer, prompt) elapsed_time = time.time() - start_time logger.info(f'Inference Time: {elapsed_time:.2f} seconds') return response except Exception as e: logger.error(f"Error processing query: {str(e)}") logger.error(traceback.format_exc()) return f"I encountered an error while processing your question: {str(e)}" class SportsChatbot: def __init__(self): self.cache_filename = "embeddings_2296.pkl" self.cache_drive_link = "https://drive.google.com/uc?id=1LuJdnwe99C0EgvJpyfHYCKzUvj94FWlC" self.cache_data = None self.model = None self.tokenizer = None self.initialize_pipeline() def initialize_pipeline(self): try: logger.info("Initializing SportsChatbot pipeline") # Initialize retriever and load cache retriever = SentenceTransformerRetriever() self.cache_data = retriever.load_specific_cache(self.cache_filename, self.cache_drive_link) # Initialize DeepSeek model self.model, self.tokenizer = initialize_llm() logger.info("SportsChatbot pipeline initialized successfully") except Exception as e: logger.error(f"Error initializing the application: {str(e)}") logger.error(traceback.format_exc()) raise Exception(f"Error initializing the application: {str(e)}") def process_question(self, question: str, progress=gr.Progress()): try: if not question.strip(): return "Please enter a question!" logger.info(f"Received question: {question}") progress(0.1, desc="Processing query...") # Add intermediate progress steps for better feedback progress(0.3, desc="Searching knowledge base...") progress(0.5, desc="Analyzing relevant information...") response = process_query(question, self.cache_data, self.model, self.tokenizer) progress(0.9, desc="Finalizing response...") logger.info("Response generated successfully") return response except Exception as e: logger.error(f"Error in process_question: {str(e)}") logger.error(traceback.format_exc()) return f"Sorry, an error occurred: {str(e)}" def create_demo(): try: logger.info("Creating Gradio demo") chatbot = SportsChatbot() with gr.Blocks(title="The Sport Chatbot") as demo: gr.Markdown("# The Sport Chatbot") gr.Markdown("### Using ESPN API") gr.Markdown("Hey there! 👋 I can help you with information on Ice Hockey, Baseball, American Football, Soccer, and Basketball. With access to the ESPN API, I'm up to date with the latest details for these sports up until October 2024.") gr.Markdown("Got any general questions? Feel free to ask—I'll do my best to provide answers based on the information I've been trained on!") with gr.Row(): question_input = gr.Textbox( label="Enter your question:", placeholder="Type your sports-related question here...", lines=2 ) with gr.Row(): submit_btn = gr.Button("Get Answer", variant="primary") # Add a debug output area with gr.Row(): debug_output = gr.Markdown(label="Debug Info", visible=True) with gr.Row(): answer_output = gr.Markdown(label="Answer") # Define a debug function to test button clicks def update_debug_info(question): logger.info(f"Button clicked with question: {question}") return f"Processing question: '{question}' at {time.strftime('%H:%M:%S')}" # Connect the debug function to show activity submit_btn.click( fn=update_debug_info, inputs=question_input, outputs=debug_output, ).then( fn=chatbot.process_question, inputs=question_input, outputs=answer_output, api_name="answer_question" ) gr.Examples( examples=[ "Who won the NBA championship in 2023?", "What are the basic rules of ice hockey?", "Tell me about the NFL playoffs format.", ], inputs=question_input, ) logger.info("Gradio demo created successfully") return demo except Exception as e: logger.error(f"Error creating demo: {str(e)}") logger.error(traceback.format_exc()) raise if __name__ == "__main__": try: logger.info("Starting Sports Chatbot application") demo = create_demo() logger.info("Launching Gradio interface") demo.launch() except Exception as e: logger.error(f"Application startup failed: {str(e)}") logger.error(traceback.format_exc())