Spaces:
Sleeping
Sleeping
Commit
·
0530e27
1
Parent(s):
764d3dc
Create ImageDepth1.py
Browse files- ImageDepth1.py +31 -0
ImageDepth1.py
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import DPTImageProcessor, DPTForDepthEstimation
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import requests
|
| 6 |
+
|
| 7 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
| 8 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
| 9 |
+
|
| 10 |
+
processor = DPTImageProcessor.from_pretrained("Intel/dpt-large")
|
| 11 |
+
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
|
| 12 |
+
|
| 13 |
+
# prepare image for the model
|
| 14 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 15 |
+
|
| 16 |
+
with torch.no_grad():
|
| 17 |
+
outputs = model(**inputs)
|
| 18 |
+
predicted_depth = outputs.predicted_depth
|
| 19 |
+
|
| 20 |
+
# interpolate to original size
|
| 21 |
+
prediction = torch.nn.functional.interpolate(
|
| 22 |
+
predicted_depth.unsqueeze(1),
|
| 23 |
+
size=image.size[::-1],
|
| 24 |
+
mode="bicubic",
|
| 25 |
+
align_corners=False,
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
# visualize the prediction
|
| 29 |
+
output = prediction.squeeze().cpu().numpy()
|
| 30 |
+
formatted = (output * 255 / np.max(output)).astype("uint8")
|
| 31 |
+
depth = Image.fromarray(formatted)
|