Update main.py
Browse files
main.py
CHANGED
@@ -1,13 +1,12 @@
|
|
1 |
from fastapi import FastAPI
|
2 |
-
from fastapi.responses import StreamingResponse
|
3 |
from pydantic import BaseModel
|
4 |
from huggingface_hub import InferenceClient
|
|
|
5 |
import uvicorn
|
6 |
-
import asyncio
|
7 |
|
8 |
app = FastAPI()
|
9 |
|
10 |
-
client = InferenceClient("mistralai/
|
11 |
|
12 |
class Item(BaseModel):
|
13 |
prompt: str
|
@@ -26,8 +25,10 @@ def format_prompt(message, history):
|
|
26 |
prompt += f"[INST] {message} [/INST]"
|
27 |
return prompt
|
28 |
|
29 |
-
async def
|
30 |
-
temperature =
|
|
|
|
|
31 |
top_p = float(item.top_p)
|
32 |
|
33 |
generate_kwargs = dict(
|
@@ -40,19 +41,11 @@ async def generate(item: Item):
|
|
40 |
)
|
41 |
|
42 |
formatted_prompt = format_prompt(f"{item.system_prompt}, {item.prompt}", item.history)
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
async for response in stream:
|
49 |
-
yield response.token.text # Yield each token as it is received
|
50 |
-
|
51 |
-
# Optional: Add a small delay to simulate streaming effect (if needed)
|
52 |
-
await asyncio.sleep(0.1)
|
53 |
-
|
54 |
-
return event_stream()
|
55 |
|
56 |
@app.post("/generate/")
|
57 |
async def generate_text(item: Item):
|
58 |
-
return StreamingResponse(
|
|
|
1 |
from fastapi import FastAPI
|
|
|
2 |
from pydantic import BaseModel
|
3 |
from huggingface_hub import InferenceClient
|
4 |
+
from fastapi.responses import StreamingResponse
|
5 |
import uvicorn
|
|
|
6 |
|
7 |
app = FastAPI()
|
8 |
|
9 |
+
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
10 |
|
11 |
class Item(BaseModel):
|
12 |
prompt: str
|
|
|
25 |
prompt += f"[INST] {message} [/INST]"
|
26 |
return prompt
|
27 |
|
28 |
+
async def generate_stream(item: Item):
|
29 |
+
temperature = float(item.temperature)
|
30 |
+
if temperature < 1e-2:
|
31 |
+
temperature = 1e-2
|
32 |
top_p = float(item.top_p)
|
33 |
|
34 |
generate_kwargs = dict(
|
|
|
41 |
)
|
42 |
|
43 |
formatted_prompt = format_prompt(f"{item.system_prompt}, {item.prompt}", item.history)
|
44 |
+
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
45 |
+
|
46 |
+
for response in stream:
|
47 |
+
yield response.token.text # Stream each token as it's received
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
@app.post("/generate/")
|
50 |
async def generate_text(item: Item):
|
51 |
+
return StreamingResponse(generate_stream(item), media_type="text/plain")
|