Spaces:
Runtime error
Runtime error
import streamlit as st | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from sklearn.linear_model import LinearRegression, Ridge | |
from sklearn.preprocessing import PolynomialFeatures | |
from sklearn.metrics import mean_squared_error | |
st.subheader("Ridge Demo") | |
col1, col2 = st.columns(2) | |
degree = st.slider('Degree', 2, 40, 1) | |
alpha = st.slider('Lambda (Regularisation)', 0, 500, 1) | |
with col1: | |
st.markdown("#### Un-regularized") | |
with col2: | |
st.markdown("#### Regularized") | |
x = np.linspace(-1., 1., 100) | |
y = 4 + 3*x + 2*np.sin(x) + 2*np.random.randn(len(x)) | |
poly = PolynomialFeatures(degree=degree, include_bias=False) | |
x_new = poly.fit_transform(x.reshape(-1, 1)) | |
lr = LinearRegression() | |
lr.fit(x_new, y) | |
y_pred = lr.predict(x_new) | |
ri = Ridge(alpha = alpha) | |
ri.fit(x_new, y) | |
y_pred_ri = ri.predict(x_new) | |
fig1, ax1 = plt.subplots() | |
fig2, ax2 = plt.subplots() | |
ax1.scatter(x, y) | |
ax1.plot(x, y_pred) | |
ax2.scatter(x, y) | |
ax2.plot(x, y_pred_ri) | |
for ax in [ax1, ax2]: | |
ax.spines['right'].set_visible(False) | |
ax.spines['top'].set_visible(False) | |
# Only show ticks on the left and bottom spines | |
ax.yaxis.set_ticks_position('left') | |
ax.xaxis.set_ticks_position('bottom') | |
ax.set_xlabel("x") | |
ax.set_ylabel("y") | |
rmse = np.round(np.sqrt(mean_squared_error(y_pred, y)), 2) | |
ax1.set_title(f"Train RMSE: {rmse}") | |
rmse_ri = np.round(np.sqrt(mean_squared_error(y_pred_ri, y)), 2) | |
ax2.set_title(f"Train RMSE: {rmse_ri}") | |
with col1: | |
st.pyplot(fig1) | |
with col2: | |
st.pyplot(fig2) | |
hide_streamlit_style = """ | |
<style> | |
#MainMenu {visibility: hidden;} | |
footer {visibility: hidden;} | |
</style> | |
""" | |
st.markdown(hide_streamlit_style, unsafe_allow_html=True) |