File size: 9,132 Bytes
d12a6b6
 
 
 
 
 
 
 
c3b0824
d12a6b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3b0824
d12a6b6
 
 
c3b0824
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d12a6b6
 
 
 
c3b0824
 
d12a6b6
c3b0824
 
 
d12a6b6
c3b0824
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d12a6b6
 
c3b0824
d12a6b6
 
 
 
 
 
 
 
 
 
 
 
 
 
c3b0824
d12a6b6
c3b0824
 
 
 
d12a6b6
c3b0824
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d12a6b6
 
 
c3b0824
d12a6b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3b0824
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d12a6b6
c3b0824
 
 
 
d12a6b6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
"""
OpenAI API Routes - Handles OpenAI-compatible endpoints.
This module provides OpenAI-compatible endpoints that transform requests/responses
and delegate to the Google API client.
"""
import json
import uuid
import asyncio
import logging
from fastapi import APIRouter, Request, Response, Depends
from fastapi.responses import StreamingResponse

from .auth import authenticate_user
from .models import OpenAIChatCompletionRequest
from .openai_transformers import (
    openai_request_to_gemini,
    gemini_response_to_openai,
    gemini_stream_chunk_to_openai
)
from .google_api_client import send_gemini_request, build_gemini_payload_from_openai

router = APIRouter()


@router.post("/v1/chat/completions")
async def openai_chat_completions(
    request: OpenAIChatCompletionRequest, 
    http_request: Request, 
    username: str = Depends(authenticate_user)
):
    """
    OpenAI-compatible chat completions endpoint.
    Transforms OpenAI requests to Gemini format, sends to Google API,
    and transforms responses back to OpenAI format.
    """
    
    try:
        logging.info(f"OpenAI chat completion request: model={request.model}, stream={request.stream}")
        
        # Transform OpenAI request to Gemini format
        gemini_request_data = openai_request_to_gemini(request)
        
        # Build the payload for Google API
        gemini_payload = build_gemini_payload_from_openai(gemini_request_data)
        
    except Exception as e:
        logging.error(f"Error processing OpenAI request: {str(e)}")
        return Response(
            content=json.dumps({
                "error": {
                    "message": f"Request processing failed: {str(e)}",
                    "type": "invalid_request_error"
                }
            }),
            status_code=400,
            media_type="application/json"
        )
    
    if request.stream:
        # Handle streaming response
        async def openai_stream_generator():
            try:
                response = send_gemini_request(gemini_payload, is_streaming=True)
                
                if isinstance(response, StreamingResponse):
                    response_id = "chatcmpl-" + str(uuid.uuid4())
                    logging.info(f"Starting streaming response: {response_id}")
                    
                    async for chunk in response.body_iterator:
                        if isinstance(chunk, bytes):
                            chunk = chunk.decode('utf-8')
                        
                        if chunk.startswith('data: '):
                            try:
                                # Parse the Gemini streaming chunk
                                chunk_data = chunk[6:]  # Remove 'data: ' prefix
                                gemini_chunk = json.loads(chunk_data)
                                
                                # Transform to OpenAI format
                                openai_chunk = gemini_stream_chunk_to_openai(
                                    gemini_chunk,
                                    request.model,
                                    response_id
                                )
                                
                                # Send as OpenAI streaming format
                                yield f"data: {json.dumps(openai_chunk)}\n\n"
                                await asyncio.sleep(0)
                                
                            except (json.JSONDecodeError, KeyError, UnicodeDecodeError) as e:
                                logging.warning(f"Failed to parse streaming chunk: {str(e)}")
                                continue
                    
                    # Send the final [DONE] marker
                    yield "data: [DONE]\n\n"
                    logging.info(f"Completed streaming response: {response_id}")
                else:
                    # Error case - log and forward the error response
                    error_msg = "Streaming request failed"
                    if hasattr(response, 'status_code'):
                        error_msg += f" (status: {response.status_code})"
                    if hasattr(response, 'body'):
                        error_msg += f" (body: {response.body})"
                    
                    logging.error(error_msg)
                    error_data = {
                        "error": {
                            "message": error_msg,
                            "type": "api_error"
                        }
                    }
                    yield f"data: {json.dumps(error_data)}\n\n"
                    yield "data: [DONE]\n\n"
            except Exception as e:
                logging.error(f"Streaming error: {str(e)}")
                error_data = {
                    "error": {
                        "message": f"Streaming failed: {str(e)}",
                        "type": "api_error"
                    }
                }
                yield f"data: {json.dumps(error_data)}\n\n"
                yield "data: [DONE]\n\n"

        return StreamingResponse(
            openai_stream_generator(), 
            media_type="text/event-stream"
        )
    
    else:
        # Handle non-streaming response
        try:
            response = send_gemini_request(gemini_payload, is_streaming=False)
            
            if isinstance(response, Response) and response.status_code != 200:
                # Log and forward error responses
                logging.error(f"Gemini API error: status={response.status_code}, body={response.body}")
                return response
            
            try:
                # Parse Gemini response and transform to OpenAI format
                gemini_response = json.loads(response.body)
                openai_response = gemini_response_to_openai(gemini_response, request.model)
                
                logging.info(f"Successfully processed non-streaming response for model: {request.model}")
                return openai_response
                
            except (json.JSONDecodeError, AttributeError) as e:
                logging.error(f"Failed to parse Gemini response: {str(e)}")
                return Response(
                    content=json.dumps({
                        "error": {
                            "message": f"Failed to process response: {str(e)}",
                            "type": "api_error"
                        }
                    }),
                    status_code=500,
                    media_type="application/json"
                )
        except Exception as e:
            logging.error(f"Non-streaming request failed: {str(e)}")
            return Response(
                content=json.dumps({
                    "error": {
                        "message": f"Request failed: {str(e)}",
                        "type": "api_error"
                    }
                }),
                status_code=500,
                media_type="application/json"
            )


@router.get("/v1/models")
async def openai_list_models(username: str = Depends(authenticate_user)):
    """
    OpenAI-compatible models endpoint.
    Returns available models in OpenAI format.
    """
    
    try:
        logging.info("OpenAI models list requested")
        
        # Convert our Gemini models to OpenAI format
        from .config import SUPPORTED_MODELS
        
        openai_models = []
        for model in SUPPORTED_MODELS:
            # Remove "models/" prefix for OpenAI compatibility
            model_id = model["name"].replace("models/", "")
            openai_models.append({
                "id": model_id,
                "object": "model",
                "created": 1677610602,  # Static timestamp
                "owned_by": "google",
                "permission": [
                    {
                        "id": "modelperm-" + model_id.replace("/", "-"),
                        "object": "model_permission",
                        "created": 1677610602,
                        "allow_create_engine": False,
                        "allow_sampling": True,
                        "allow_logprobs": False,
                        "allow_search_indices": False,
                        "allow_view": True,
                        "allow_fine_tuning": False,
                        "organization": "*",
                        "group": None,
                        "is_blocking": False
                    }
                ],
                "root": model_id,
                "parent": None
            })
        
        logging.info(f"Returning {len(openai_models)} models")
        return {
            "object": "list",
            "data": openai_models
        }
        
    except Exception as e:
        logging.error(f"Failed to list models: {str(e)}")
        return Response(
            content=json.dumps({
                "error": {
                    "message": f"Failed to list models: {str(e)}",
                    "type": "api_error"
                }
            }),
            status_code=500,
            media_type="application/json"
        )