Spaces:
Running
Running
Delete src
Browse files- src/__init__.py +0 -0
- src/auth.py +0 -598
- src/config.py +0 -242
- src/gemini_routes.py +0 -186
- src/google_api_client.py +0 -335
- src/main.py +0 -143
- src/models.py +0 -72
- src/openai_routes.py +0 -305
- src/openai_transformers.py +0 -258
- src/utils.py +0 -38
src/__init__.py
DELETED
File without changes
|
src/auth.py
DELETED
@@ -1,598 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import json
|
3 |
-
import base64
|
4 |
-
import time
|
5 |
-
import logging
|
6 |
-
from datetime import datetime
|
7 |
-
from fastapi import Request, HTTPException, Depends
|
8 |
-
from fastapi.security import HTTPBasic
|
9 |
-
from http.server import BaseHTTPRequestHandler, HTTPServer
|
10 |
-
from urllib.parse import urlparse, parse_qs
|
11 |
-
|
12 |
-
from google.oauth2.credentials import Credentials
|
13 |
-
from google_auth_oauthlib.flow import Flow
|
14 |
-
from google.auth.transport.requests import Request as GoogleAuthRequest
|
15 |
-
|
16 |
-
from .utils import get_user_agent, get_client_metadata
|
17 |
-
from .config import (
|
18 |
-
CLIENT_ID, CLIENT_SECRET, SCOPES, CREDENTIAL_FILE,
|
19 |
-
CODE_ASSIST_ENDPOINT, GEMINI_AUTH_PASSWORD
|
20 |
-
)
|
21 |
-
|
22 |
-
# --- Global State ---
|
23 |
-
credentials = None
|
24 |
-
user_project_id = None
|
25 |
-
onboarding_complete = False
|
26 |
-
credentials_from_env = False # Track if credentials came from environment variable
|
27 |
-
|
28 |
-
security = HTTPBasic()
|
29 |
-
|
30 |
-
class _OAuthCallbackHandler(BaseHTTPRequestHandler):
|
31 |
-
auth_code = None
|
32 |
-
def do_GET(self):
|
33 |
-
query_components = parse_qs(urlparse(self.path).query)
|
34 |
-
code = query_components.get("code", [None])[0]
|
35 |
-
if code:
|
36 |
-
_OAuthCallbackHandler.auth_code = code
|
37 |
-
self.send_response(200)
|
38 |
-
self.send_header("Content-type", "text/html")
|
39 |
-
self.end_headers()
|
40 |
-
self.wfile.write(b"<h1>OAuth authentication successful!</h1><p>You can close this window. Please check the proxy server logs to verify that onboarding completed successfully. No need to restart the proxy.</p>")
|
41 |
-
else:
|
42 |
-
self.send_response(400)
|
43 |
-
self.send_header("Content-type", "text/html")
|
44 |
-
self.end_headers()
|
45 |
-
self.wfile.write(b"<h1>Authentication failed.</h1><p>Please try again.</p>")
|
46 |
-
|
47 |
-
def authenticate_user(request: Request):
|
48 |
-
"""Authenticate the user with multiple methods."""
|
49 |
-
# Check for API key in query parameters first (for Gemini client compatibility)
|
50 |
-
api_key = request.query_params.get("key")
|
51 |
-
if api_key and api_key == GEMINI_AUTH_PASSWORD:
|
52 |
-
return "api_key_user"
|
53 |
-
|
54 |
-
# Check for API key in x-goog-api-key header (Google SDK format)
|
55 |
-
goog_api_key = request.headers.get("x-goog-api-key", "")
|
56 |
-
if goog_api_key and goog_api_key == GEMINI_AUTH_PASSWORD:
|
57 |
-
return "goog_api_key_user"
|
58 |
-
|
59 |
-
# Check for API key in Authorization header (Bearer token format)
|
60 |
-
auth_header = request.headers.get("authorization", "")
|
61 |
-
if auth_header.startswith("Bearer "):
|
62 |
-
bearer_token = auth_header[7:]
|
63 |
-
if bearer_token == GEMINI_AUTH_PASSWORD:
|
64 |
-
return "bearer_user"
|
65 |
-
|
66 |
-
# Check for HTTP Basic Authentication
|
67 |
-
if auth_header.startswith("Basic "):
|
68 |
-
try:
|
69 |
-
encoded_credentials = auth_header[6:]
|
70 |
-
decoded_credentials = base64.b64decode(encoded_credentials).decode('utf-8')
|
71 |
-
username, password = decoded_credentials.split(':', 1)
|
72 |
-
if password == GEMINI_AUTH_PASSWORD:
|
73 |
-
return username
|
74 |
-
except Exception:
|
75 |
-
pass
|
76 |
-
|
77 |
-
# If none of the authentication methods work
|
78 |
-
raise HTTPException(
|
79 |
-
status_code=401,
|
80 |
-
detail="Invalid authentication credentials. Use HTTP Basic Auth, Bearer token, 'key' query parameter, or 'x-goog-api-key' header.",
|
81 |
-
headers={"WWW-Authenticate": "Basic"},
|
82 |
-
)
|
83 |
-
|
84 |
-
def save_credentials(creds, project_id=None):
|
85 |
-
global credentials_from_env
|
86 |
-
|
87 |
-
# Don't save credentials to file if they came from environment variable,
|
88 |
-
# but still save project_id if provided and no file exists or file lacks project_id
|
89 |
-
if credentials_from_env:
|
90 |
-
if project_id and os.path.exists(CREDENTIAL_FILE):
|
91 |
-
try:
|
92 |
-
with open(CREDENTIAL_FILE, "r") as f:
|
93 |
-
existing_data = json.load(f)
|
94 |
-
# Only update project_id if it's missing from the file
|
95 |
-
if "project_id" not in existing_data:
|
96 |
-
existing_data["project_id"] = project_id
|
97 |
-
with open(CREDENTIAL_FILE, "w") as f:
|
98 |
-
json.dump(existing_data, f, indent=2)
|
99 |
-
logging.info(f"Added project_id {project_id} to existing credential file")
|
100 |
-
except Exception as e:
|
101 |
-
logging.warning(f"Could not update project_id in credential file: {e}")
|
102 |
-
return
|
103 |
-
|
104 |
-
creds_data = {
|
105 |
-
"client_id": CLIENT_ID,
|
106 |
-
"client_secret": CLIENT_SECRET,
|
107 |
-
"token": creds.token,
|
108 |
-
"refresh_token": creds.refresh_token,
|
109 |
-
"scopes": creds.scopes if creds.scopes else SCOPES,
|
110 |
-
"token_uri": "https://oauth2.googleapis.com/token",
|
111 |
-
}
|
112 |
-
|
113 |
-
if creds.expiry:
|
114 |
-
if creds.expiry.tzinfo is None:
|
115 |
-
from datetime import timezone
|
116 |
-
expiry_utc = creds.expiry.replace(tzinfo=timezone.utc)
|
117 |
-
else:
|
118 |
-
expiry_utc = creds.expiry
|
119 |
-
# Keep the existing ISO format for backward compatibility, but ensure it's properly handled during loading
|
120 |
-
creds_data["expiry"] = expiry_utc.isoformat()
|
121 |
-
|
122 |
-
if project_id:
|
123 |
-
creds_data["project_id"] = project_id
|
124 |
-
elif os.path.exists(CREDENTIAL_FILE):
|
125 |
-
try:
|
126 |
-
with open(CREDENTIAL_FILE, "r") as f:
|
127 |
-
existing_data = json.load(f)
|
128 |
-
if "project_id" in existing_data:
|
129 |
-
creds_data["project_id"] = existing_data["project_id"]
|
130 |
-
except Exception:
|
131 |
-
pass
|
132 |
-
|
133 |
-
|
134 |
-
with open(CREDENTIAL_FILE, "w") as f:
|
135 |
-
json.dump(creds_data, f, indent=2)
|
136 |
-
|
137 |
-
|
138 |
-
def get_credentials(allow_oauth_flow=True):
|
139 |
-
"""Loads credentials matching gemini-cli OAuth2 flow."""
|
140 |
-
global credentials, credentials_from_env, user_project_id
|
141 |
-
|
142 |
-
if credentials and credentials.token:
|
143 |
-
return credentials
|
144 |
-
|
145 |
-
# Check for credentials in environment variable (JSON string)
|
146 |
-
env_creds_json = os.getenv("GEMINI_CREDENTIALS")
|
147 |
-
if env_creds_json:
|
148 |
-
# First, check if we have a refresh token - if so, we should always be able to load credentials
|
149 |
-
try:
|
150 |
-
raw_env_creds_data = json.loads(env_creds_json)
|
151 |
-
|
152 |
-
# SAFEGUARD: If refresh_token exists, we should always load credentials successfully
|
153 |
-
if "refresh_token" in raw_env_creds_data and raw_env_creds_data["refresh_token"]:
|
154 |
-
logging.info("Environment refresh token found - ensuring credentials load successfully")
|
155 |
-
|
156 |
-
try:
|
157 |
-
creds_data = raw_env_creds_data.copy()
|
158 |
-
|
159 |
-
# Handle different credential formats
|
160 |
-
if "access_token" in creds_data and "token" not in creds_data:
|
161 |
-
creds_data["token"] = creds_data["access_token"]
|
162 |
-
|
163 |
-
if "scope" in creds_data and "scopes" not in creds_data:
|
164 |
-
creds_data["scopes"] = creds_data["scope"].split()
|
165 |
-
|
166 |
-
# Handle problematic expiry formats that cause parsing errors
|
167 |
-
if "expiry" in creds_data:
|
168 |
-
expiry_str = creds_data["expiry"]
|
169 |
-
# If expiry has timezone info that causes parsing issues, try to fix it
|
170 |
-
if isinstance(expiry_str, str) and ("+00:00" in expiry_str or "Z" in expiry_str):
|
171 |
-
try:
|
172 |
-
# Try to parse and reformat the expiry to a format Google Credentials can handle
|
173 |
-
from datetime import datetime
|
174 |
-
if "+00:00" in expiry_str:
|
175 |
-
# Handle ISO format with timezone offset
|
176 |
-
parsed_expiry = datetime.fromisoformat(expiry_str)
|
177 |
-
elif expiry_str.endswith("Z"):
|
178 |
-
# Handle ISO format with Z suffix
|
179 |
-
parsed_expiry = datetime.fromisoformat(expiry_str.replace('Z', '+00:00'))
|
180 |
-
else:
|
181 |
-
parsed_expiry = datetime.fromisoformat(expiry_str)
|
182 |
-
|
183 |
-
# Convert to UTC timestamp format that Google Credentials library expects
|
184 |
-
import time
|
185 |
-
timestamp = parsed_expiry.timestamp()
|
186 |
-
creds_data["expiry"] = datetime.utcfromtimestamp(timestamp).strftime("%Y-%m-%dT%H:%M:%SZ")
|
187 |
-
logging.info(f"Converted environment expiry format from '{expiry_str}' to '{creds_data['expiry']}'")
|
188 |
-
except Exception as expiry_error:
|
189 |
-
logging.warning(f"Could not parse environment expiry format '{expiry_str}': {expiry_error}, removing expiry field")
|
190 |
-
# Remove problematic expiry field - credentials will be treated as expired but still loadable
|
191 |
-
del creds_data["expiry"]
|
192 |
-
|
193 |
-
credentials = Credentials.from_authorized_user_info(creds_data, SCOPES)
|
194 |
-
credentials_from_env = True # Mark as environment credentials
|
195 |
-
|
196 |
-
# Extract project_id from environment credentials if available
|
197 |
-
if "project_id" in raw_env_creds_data:
|
198 |
-
user_project_id = raw_env_creds_data["project_id"]
|
199 |
-
logging.info(f"Extracted project_id from environment credentials: {user_project_id}")
|
200 |
-
|
201 |
-
# Try to refresh if expired and refresh token exists
|
202 |
-
if credentials.expired and credentials.refresh_token:
|
203 |
-
try:
|
204 |
-
logging.info("Environment credentials expired, attempting refresh...")
|
205 |
-
credentials.refresh(GoogleAuthRequest())
|
206 |
-
logging.info("Environment credentials refreshed successfully")
|
207 |
-
except Exception as refresh_error:
|
208 |
-
logging.warning(f"Failed to refresh environment credentials: {refresh_error}")
|
209 |
-
logging.info("Using existing environment credentials despite refresh failure")
|
210 |
-
elif not credentials.expired:
|
211 |
-
logging.info("Environment credentials are still valid, no refresh needed")
|
212 |
-
elif not credentials.refresh_token:
|
213 |
-
logging.warning("Environment credentials expired but no refresh token available")
|
214 |
-
|
215 |
-
return credentials
|
216 |
-
|
217 |
-
except Exception as parsing_error:
|
218 |
-
# SAFEGUARD: Even if parsing fails, try to create minimal credentials with refresh token
|
219 |
-
logging.warning(f"Failed to parse environment credentials normally: {parsing_error}")
|
220 |
-
logging.info("Attempting to create minimal environment credentials with refresh token")
|
221 |
-
|
222 |
-
try:
|
223 |
-
minimal_creds_data = {
|
224 |
-
"client_id": raw_env_creds_data.get("client_id", CLIENT_ID),
|
225 |
-
"client_secret": raw_env_creds_data.get("client_secret", CLIENT_SECRET),
|
226 |
-
"refresh_token": raw_env_creds_data["refresh_token"],
|
227 |
-
"token_uri": "https://oauth2.googleapis.com/token",
|
228 |
-
}
|
229 |
-
|
230 |
-
credentials = Credentials.from_authorized_user_info(minimal_creds_data, SCOPES)
|
231 |
-
credentials_from_env = True # Mark as environment credentials
|
232 |
-
|
233 |
-
# Extract project_id from environment credentials if available
|
234 |
-
if "project_id" in raw_env_creds_data:
|
235 |
-
user_project_id = raw_env_creds_data["project_id"]
|
236 |
-
logging.info(f"Extracted project_id from minimal environment credentials: {user_project_id}")
|
237 |
-
|
238 |
-
# Force refresh since we don't have a valid token
|
239 |
-
try:
|
240 |
-
logging.info("Refreshing minimal environment credentials...")
|
241 |
-
credentials.refresh(GoogleAuthRequest())
|
242 |
-
logging.info("Minimal environment credentials refreshed successfully")
|
243 |
-
return credentials
|
244 |
-
except Exception as refresh_error:
|
245 |
-
logging.error(f"Failed to refresh minimal environment credentials: {refresh_error}")
|
246 |
-
# Even if refresh fails, return the credentials - they might still work
|
247 |
-
return credentials
|
248 |
-
|
249 |
-
except Exception as minimal_error:
|
250 |
-
logging.error(f"Failed to create minimal environment credentials: {minimal_error}")
|
251 |
-
# Fall through to file-based credentials
|
252 |
-
else:
|
253 |
-
logging.warning("No refresh token found in environment credentials")
|
254 |
-
# Fall through to file-based credentials
|
255 |
-
|
256 |
-
except Exception as e:
|
257 |
-
logging.error(f"Failed to parse environment credentials JSON: {e}")
|
258 |
-
# Fall through to file-based credentials
|
259 |
-
|
260 |
-
# Check for credentials file (CREDENTIAL_FILE now includes GOOGLE_APPLICATION_CREDENTIALS path if set)
|
261 |
-
if os.path.exists(CREDENTIAL_FILE):
|
262 |
-
# First, check if we have a refresh token - if so, we should always be able to load credentials
|
263 |
-
try:
|
264 |
-
with open(CREDENTIAL_FILE, "r") as f:
|
265 |
-
raw_creds_data = json.load(f)
|
266 |
-
|
267 |
-
# SAFEGUARD: If refresh_token exists, we should always load credentials successfully
|
268 |
-
if "refresh_token" in raw_creds_data and raw_creds_data["refresh_token"]:
|
269 |
-
logging.info("Refresh token found - ensuring credentials load successfully")
|
270 |
-
|
271 |
-
try:
|
272 |
-
creds_data = raw_creds_data.copy()
|
273 |
-
|
274 |
-
# Handle different credential formats
|
275 |
-
if "access_token" in creds_data and "token" not in creds_data:
|
276 |
-
creds_data["token"] = creds_data["access_token"]
|
277 |
-
|
278 |
-
if "scope" in creds_data and "scopes" not in creds_data:
|
279 |
-
creds_data["scopes"] = creds_data["scope"].split()
|
280 |
-
|
281 |
-
# Handle problematic expiry formats that cause parsing errors
|
282 |
-
if "expiry" in creds_data:
|
283 |
-
expiry_str = creds_data["expiry"]
|
284 |
-
# If expiry has timezone info that causes parsing issues, try to fix it
|
285 |
-
if isinstance(expiry_str, str) and ("+00:00" in expiry_str or "Z" in expiry_str):
|
286 |
-
try:
|
287 |
-
# Try to parse and reformat the expiry to a format Google Credentials can handle
|
288 |
-
from datetime import datetime
|
289 |
-
if "+00:00" in expiry_str:
|
290 |
-
# Handle ISO format with timezone offset
|
291 |
-
parsed_expiry = datetime.fromisoformat(expiry_str)
|
292 |
-
elif expiry_str.endswith("Z"):
|
293 |
-
# Handle ISO format with Z suffix
|
294 |
-
parsed_expiry = datetime.fromisoformat(expiry_str.replace('Z', '+00:00'))
|
295 |
-
else:
|
296 |
-
parsed_expiry = datetime.fromisoformat(expiry_str)
|
297 |
-
|
298 |
-
# Convert to UTC timestamp format that Google Credentials library expects
|
299 |
-
import time
|
300 |
-
timestamp = parsed_expiry.timestamp()
|
301 |
-
creds_data["expiry"] = datetime.utcfromtimestamp(timestamp).strftime("%Y-%m-%dT%H:%M:%SZ")
|
302 |
-
logging.info(f"Converted expiry format from '{expiry_str}' to '{creds_data['expiry']}'")
|
303 |
-
except Exception as expiry_error:
|
304 |
-
logging.warning(f"Could not parse expiry format '{expiry_str}': {expiry_error}, removing expiry field")
|
305 |
-
# Remove problematic expiry field - credentials will be treated as expired but still loadable
|
306 |
-
del creds_data["expiry"]
|
307 |
-
|
308 |
-
credentials = Credentials.from_authorized_user_info(creds_data, SCOPES)
|
309 |
-
# Mark as environment credentials if GOOGLE_APPLICATION_CREDENTIALS was used
|
310 |
-
credentials_from_env = bool(os.getenv("GOOGLE_APPLICATION_CREDENTIALS"))
|
311 |
-
|
312 |
-
# Try to refresh if expired and refresh token exists
|
313 |
-
if credentials.expired and credentials.refresh_token:
|
314 |
-
try:
|
315 |
-
logging.info("File-based credentials expired, attempting refresh...")
|
316 |
-
credentials.refresh(GoogleAuthRequest())
|
317 |
-
logging.info("File-based credentials refreshed successfully")
|
318 |
-
save_credentials(credentials)
|
319 |
-
except Exception as refresh_error:
|
320 |
-
logging.warning(f"Failed to refresh file-based credentials: {refresh_error}")
|
321 |
-
logging.info("Using existing file-based credentials despite refresh failure")
|
322 |
-
elif not credentials.expired:
|
323 |
-
logging.info("File-based credentials are still valid, no refresh needed")
|
324 |
-
elif not credentials.refresh_token:
|
325 |
-
logging.warning("File-based credentials expired but no refresh token available")
|
326 |
-
|
327 |
-
return credentials
|
328 |
-
|
329 |
-
except Exception as parsing_error:
|
330 |
-
# SAFEGUARD: Even if parsing fails, try to create minimal credentials with refresh token
|
331 |
-
logging.warning(f"Failed to parse credentials normally: {parsing_error}")
|
332 |
-
logging.info("Attempting to create minimal credentials with refresh token")
|
333 |
-
|
334 |
-
try:
|
335 |
-
minimal_creds_data = {
|
336 |
-
"client_id": raw_creds_data.get("client_id", CLIENT_ID),
|
337 |
-
"client_secret": raw_creds_data.get("client_secret", CLIENT_SECRET),
|
338 |
-
"refresh_token": raw_creds_data["refresh_token"],
|
339 |
-
"token_uri": "https://oauth2.googleapis.com/token",
|
340 |
-
}
|
341 |
-
|
342 |
-
credentials = Credentials.from_authorized_user_info(minimal_creds_data, SCOPES)
|
343 |
-
credentials_from_env = bool(os.getenv("GOOGLE_APPLICATION_CREDENTIALS"))
|
344 |
-
|
345 |
-
# Force refresh since we don't have a valid token
|
346 |
-
try:
|
347 |
-
logging.info("Refreshing minimal credentials...")
|
348 |
-
credentials.refresh(GoogleAuthRequest())
|
349 |
-
logging.info("Minimal credentials refreshed successfully")
|
350 |
-
save_credentials(credentials)
|
351 |
-
return credentials
|
352 |
-
except Exception as refresh_error:
|
353 |
-
logging.error(f"Failed to refresh minimal credentials: {refresh_error}")
|
354 |
-
# Even if refresh fails, return the credentials - they might still work
|
355 |
-
return credentials
|
356 |
-
|
357 |
-
except Exception as minimal_error:
|
358 |
-
logging.error(f"Failed to create minimal credentials: {minimal_error}")
|
359 |
-
# Fall through to new login as last resort
|
360 |
-
else:
|
361 |
-
logging.warning("No refresh token found in credentials file")
|
362 |
-
# Fall through to new login
|
363 |
-
|
364 |
-
except Exception as e:
|
365 |
-
logging.error(f"Failed to read credentials file {CREDENTIAL_FILE}: {e}")
|
366 |
-
# Fall through to new login only if file is completely unreadable
|
367 |
-
|
368 |
-
# Only start OAuth flow if explicitly allowed
|
369 |
-
if not allow_oauth_flow:
|
370 |
-
logging.info("OAuth flow not allowed - returning None (credentials will be required on first request)")
|
371 |
-
return None
|
372 |
-
|
373 |
-
client_config = {
|
374 |
-
"installed": {
|
375 |
-
"client_id": CLIENT_ID,
|
376 |
-
"client_secret": CLIENT_SECRET,
|
377 |
-
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
|
378 |
-
"token_uri": "https://oauth2.googleapis.com/token",
|
379 |
-
}
|
380 |
-
}
|
381 |
-
|
382 |
-
flow = Flow.from_client_config(
|
383 |
-
client_config,
|
384 |
-
scopes=SCOPES,
|
385 |
-
redirect_uri="http://localhost:8080"
|
386 |
-
)
|
387 |
-
|
388 |
-
flow.oauth2session.scope = SCOPES
|
389 |
-
|
390 |
-
auth_url, _ = flow.authorization_url(
|
391 |
-
access_type="offline",
|
392 |
-
prompt="consent",
|
393 |
-
include_granted_scopes='true'
|
394 |
-
)
|
395 |
-
print(f"\n{'='*80}")
|
396 |
-
print(f"AUTHENTICATION REQUIRED")
|
397 |
-
print(f"{'='*80}")
|
398 |
-
print(f"Please open this URL in your browser to log in:")
|
399 |
-
print(f"{auth_url}")
|
400 |
-
print(f"{'='*80}\n")
|
401 |
-
logging.info(f"Please open this URL in your browser to log in: {auth_url}")
|
402 |
-
|
403 |
-
server = HTTPServer(("", 8080), _OAuthCallbackHandler)
|
404 |
-
server.handle_request()
|
405 |
-
|
406 |
-
auth_code = _OAuthCallbackHandler.auth_code
|
407 |
-
if not auth_code:
|
408 |
-
return None
|
409 |
-
|
410 |
-
import oauthlib.oauth2.rfc6749.parameters
|
411 |
-
original_validate = oauthlib.oauth2.rfc6749.parameters.validate_token_parameters
|
412 |
-
|
413 |
-
def patched_validate(params):
|
414 |
-
try:
|
415 |
-
return original_validate(params)
|
416 |
-
except Warning:
|
417 |
-
pass
|
418 |
-
|
419 |
-
oauthlib.oauth2.rfc6749.parameters.validate_token_parameters = patched_validate
|
420 |
-
|
421 |
-
try:
|
422 |
-
flow.fetch_token(code=auth_code)
|
423 |
-
credentials = flow.credentials
|
424 |
-
credentials_from_env = False # Mark as file-based credentials
|
425 |
-
save_credentials(credentials)
|
426 |
-
logging.info("Authentication successful! Credentials saved.")
|
427 |
-
return credentials
|
428 |
-
except Exception as e:
|
429 |
-
logging.error(f"Authentication failed: {e}")
|
430 |
-
return None
|
431 |
-
finally:
|
432 |
-
oauthlib.oauth2.rfc6749.parameters.validate_token_parameters = original_validate
|
433 |
-
|
434 |
-
def onboard_user(creds, project_id):
|
435 |
-
"""Ensures the user is onboarded, matching gemini-cli setupUser behavior."""
|
436 |
-
global onboarding_complete
|
437 |
-
if onboarding_complete:
|
438 |
-
return
|
439 |
-
|
440 |
-
if creds.expired and creds.refresh_token:
|
441 |
-
try:
|
442 |
-
creds.refresh(GoogleAuthRequest())
|
443 |
-
save_credentials(creds)
|
444 |
-
except Exception as e:
|
445 |
-
raise Exception(f"Failed to refresh credentials during onboarding: {str(e)}")
|
446 |
-
headers = {
|
447 |
-
"Authorization": f"Bearer {creds.token}",
|
448 |
-
"Content-Type": "application/json",
|
449 |
-
"User-Agent": get_user_agent(),
|
450 |
-
}
|
451 |
-
|
452 |
-
load_assist_payload = {
|
453 |
-
"cloudaicompanionProject": project_id,
|
454 |
-
"metadata": get_client_metadata(project_id),
|
455 |
-
}
|
456 |
-
|
457 |
-
try:
|
458 |
-
import requests
|
459 |
-
resp = requests.post(
|
460 |
-
f"{CODE_ASSIST_ENDPOINT}/v1internal:loadCodeAssist",
|
461 |
-
data=json.dumps(load_assist_payload),
|
462 |
-
headers=headers,
|
463 |
-
)
|
464 |
-
resp.raise_for_status()
|
465 |
-
load_data = resp.json()
|
466 |
-
|
467 |
-
tier = None
|
468 |
-
if load_data.get("currentTier"):
|
469 |
-
tier = load_data["currentTier"]
|
470 |
-
else:
|
471 |
-
for allowed_tier in load_data.get("allowedTiers", []):
|
472 |
-
if allowed_tier.get("isDefault"):
|
473 |
-
tier = allowed_tier
|
474 |
-
break
|
475 |
-
|
476 |
-
if not tier:
|
477 |
-
tier = {
|
478 |
-
"name": "",
|
479 |
-
"description": "",
|
480 |
-
"id": "legacy-tier",
|
481 |
-
"userDefinedCloudaicompanionProject": True,
|
482 |
-
}
|
483 |
-
|
484 |
-
if tier.get("userDefinedCloudaicompanionProject") and not project_id:
|
485 |
-
raise ValueError("This account requires setting the GOOGLE_CLOUD_PROJECT env var.")
|
486 |
-
|
487 |
-
if load_data.get("currentTier"):
|
488 |
-
onboarding_complete = True
|
489 |
-
return
|
490 |
-
|
491 |
-
onboard_req_payload = {
|
492 |
-
"tierId": tier.get("id"),
|
493 |
-
"cloudaicompanionProject": project_id,
|
494 |
-
"metadata": get_client_metadata(project_id),
|
495 |
-
}
|
496 |
-
|
497 |
-
while True:
|
498 |
-
onboard_resp = requests.post(
|
499 |
-
f"{CODE_ASSIST_ENDPOINT}/v1internal:onboardUser",
|
500 |
-
data=json.dumps(onboard_req_payload),
|
501 |
-
headers=headers,
|
502 |
-
)
|
503 |
-
onboard_resp.raise_for_status()
|
504 |
-
lro_data = onboard_resp.json()
|
505 |
-
|
506 |
-
if lro_data.get("done"):
|
507 |
-
onboarding_complete = True
|
508 |
-
break
|
509 |
-
|
510 |
-
time.sleep(5)
|
511 |
-
|
512 |
-
except requests.exceptions.HTTPError as e:
|
513 |
-
raise Exception(f"User onboarding failed. Please check your Google Cloud project permissions and try again. Error: {e.response.text if hasattr(e, 'response') else str(e)}")
|
514 |
-
except Exception as e:
|
515 |
-
raise Exception(f"User onboarding failed due to an unexpected error: {str(e)}")
|
516 |
-
|
517 |
-
def get_user_project_id(creds):
|
518 |
-
"""Gets the user's project ID matching gemini-cli setupUser logic."""
|
519 |
-
global user_project_id
|
520 |
-
|
521 |
-
# Priority 1: Check environment variable first (always check, even if user_project_id is set)
|
522 |
-
env_project_id = os.getenv("GOOGLE_CLOUD_PROJECT")
|
523 |
-
if env_project_id:
|
524 |
-
logging.info(f"Using project ID from GOOGLE_CLOUD_PROJECT environment variable: {env_project_id}")
|
525 |
-
user_project_id = env_project_id
|
526 |
-
save_credentials(creds, user_project_id)
|
527 |
-
return user_project_id
|
528 |
-
|
529 |
-
# If we already have a cached project_id and no env var override, use it
|
530 |
-
if user_project_id:
|
531 |
-
logging.info(f"Using cached project ID: {user_project_id}")
|
532 |
-
return user_project_id
|
533 |
-
|
534 |
-
# Priority 2: Check cached project ID in credential file
|
535 |
-
if os.path.exists(CREDENTIAL_FILE):
|
536 |
-
try:
|
537 |
-
with open(CREDENTIAL_FILE, "r") as f:
|
538 |
-
creds_data = json.load(f)
|
539 |
-
cached_project_id = creds_data.get("project_id")
|
540 |
-
if cached_project_id:
|
541 |
-
logging.info(f"Using cached project ID from credential file: {cached_project_id}")
|
542 |
-
user_project_id = cached_project_id
|
543 |
-
return user_project_id
|
544 |
-
except Exception as e:
|
545 |
-
logging.warning(f"Could not read project_id from credential file: {e}")
|
546 |
-
|
547 |
-
# Priority 3: Make API call to discover project ID
|
548 |
-
# Ensure we have valid credentials for the API call
|
549 |
-
if creds.expired and creds.refresh_token:
|
550 |
-
try:
|
551 |
-
logging.info("Refreshing credentials before project ID discovery...")
|
552 |
-
creds.refresh(GoogleAuthRequest())
|
553 |
-
save_credentials(creds)
|
554 |
-
logging.info("Credentials refreshed successfully for project ID discovery")
|
555 |
-
except Exception as e:
|
556 |
-
logging.error(f"Failed to refresh credentials while getting project ID: {e}")
|
557 |
-
# Continue with existing credentials - they might still work
|
558 |
-
|
559 |
-
if not creds.token:
|
560 |
-
raise Exception("No valid access token available for project ID discovery")
|
561 |
-
|
562 |
-
headers = {
|
563 |
-
"Authorization": f"Bearer {creds.token}",
|
564 |
-
"Content-Type": "application/json",
|
565 |
-
"User-Agent": get_user_agent(),
|
566 |
-
}
|
567 |
-
|
568 |
-
probe_payload = {
|
569 |
-
"metadata": get_client_metadata(),
|
570 |
-
}
|
571 |
-
|
572 |
-
try:
|
573 |
-
import requests
|
574 |
-
logging.info("Attempting to discover project ID via API call...")
|
575 |
-
resp = requests.post(
|
576 |
-
f"{CODE_ASSIST_ENDPOINT}/v1internal:loadCodeAssist",
|
577 |
-
data=json.dumps(probe_payload),
|
578 |
-
headers=headers,
|
579 |
-
)
|
580 |
-
resp.raise_for_status()
|
581 |
-
data = resp.json()
|
582 |
-
discovered_project_id = data.get("cloudaicompanionProject")
|
583 |
-
if not discovered_project_id:
|
584 |
-
raise ValueError("Could not find 'cloudaicompanionProject' in loadCodeAssist response.")
|
585 |
-
|
586 |
-
logging.info(f"Discovered project ID via API: {discovered_project_id}")
|
587 |
-
user_project_id = discovered_project_id
|
588 |
-
save_credentials(creds, user_project_id)
|
589 |
-
|
590 |
-
return user_project_id
|
591 |
-
except requests.exceptions.HTTPError as e:
|
592 |
-
logging.error(f"HTTP error during project ID discovery: {e}")
|
593 |
-
if hasattr(e, 'response') and e.response:
|
594 |
-
logging.error(f"Response status: {e.response.status_code}, body: {e.response.text}")
|
595 |
-
raise Exception(f"Failed to discover project ID via API: {e}")
|
596 |
-
except Exception as e:
|
597 |
-
logging.error(f"Unexpected error during project ID discovery: {e}")
|
598 |
-
raise Exception(f"Failed to discover project ID: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/config.py
DELETED
@@ -1,242 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
Configuration constants for the Geminicli2api proxy server.
|
3 |
-
Centralizes all configuration to avoid duplication across modules.
|
4 |
-
"""
|
5 |
-
import os
|
6 |
-
|
7 |
-
# API Endpoints
|
8 |
-
CODE_ASSIST_ENDPOINT = "https://cloudcode-pa.googleapis.com"
|
9 |
-
|
10 |
-
# Client Configuration
|
11 |
-
CLI_VERSION = "0.1.5" # Match current gemini-cli version
|
12 |
-
|
13 |
-
# OAuth Configuration
|
14 |
-
CLIENT_ID = "681255809395-oo8ft2oprdrnp9e3aqf6av3hmdib135j.apps.googleusercontent.com"
|
15 |
-
CLIENT_SECRET = "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"
|
16 |
-
SCOPES = [
|
17 |
-
"https://www.googleapis.com/auth/cloud-platform",
|
18 |
-
"https://www.googleapis.com/auth/userinfo.email",
|
19 |
-
"https://www.googleapis.com/auth/userinfo.profile",
|
20 |
-
]
|
21 |
-
|
22 |
-
# File Paths
|
23 |
-
SCRIPT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
24 |
-
CREDENTIAL_FILE = os.path.join(SCRIPT_DIR, os.getenv("GOOGLE_APPLICATION_CREDENTIALS", "oauth_creds.json"))
|
25 |
-
|
26 |
-
# Authentication
|
27 |
-
GEMINI_AUTH_PASSWORD = os.getenv("GEMINI_AUTH_PASSWORD", "123456")
|
28 |
-
|
29 |
-
# Default Safety Settings for Google API
|
30 |
-
DEFAULT_SAFETY_SETTINGS = [
|
31 |
-
{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_NONE"},
|
32 |
-
{"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_NONE"},
|
33 |
-
{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_NONE"},
|
34 |
-
{"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_NONE"},
|
35 |
-
{"category": "HARM_CATEGORY_CIVIC_INTEGRITY", "threshold": "BLOCK_NONE"}
|
36 |
-
]
|
37 |
-
|
38 |
-
# Base Models (without search variants)
|
39 |
-
BASE_MODELS = [
|
40 |
-
{
|
41 |
-
"name": "models/gemini-2.5-pro-preview-05-06",
|
42 |
-
"version": "001",
|
43 |
-
"displayName": "Gemini 2.5 Pro Preview 05-06",
|
44 |
-
"description": "Preview version of Gemini 2.5 Pro from May 6th",
|
45 |
-
"inputTokenLimit": 1048576,
|
46 |
-
"outputTokenLimit": 65535,
|
47 |
-
"supportedGenerationMethods": ["generateContent", "streamGenerateContent"],
|
48 |
-
"temperature": 1.0,
|
49 |
-
"maxTemperature": 2.0,
|
50 |
-
"topP": 0.95,
|
51 |
-
"topK": 64
|
52 |
-
},
|
53 |
-
{
|
54 |
-
"name": "models/gemini-2.5-pro-preview-06-05",
|
55 |
-
"version": "001",
|
56 |
-
"displayName": "Gemini 2.5 Pro Preview 06-05",
|
57 |
-
"description": "Preview version of Gemini 2.5 Pro from June 5th",
|
58 |
-
"inputTokenLimit": 1048576,
|
59 |
-
"outputTokenLimit": 65535,
|
60 |
-
"supportedGenerationMethods": ["generateContent", "streamGenerateContent"],
|
61 |
-
"temperature": 1.0,
|
62 |
-
"maxTemperature": 2.0,
|
63 |
-
"topP": 0.95,
|
64 |
-
"topK": 64
|
65 |
-
},
|
66 |
-
{
|
67 |
-
"name": "models/gemini-2.5-pro",
|
68 |
-
"version": "001",
|
69 |
-
"displayName": "Gemini 2.5 Pro",
|
70 |
-
"description": "Advanced multimodal model with enhanced capabilities",
|
71 |
-
"inputTokenLimit": 1048576,
|
72 |
-
"outputTokenLimit": 65535,
|
73 |
-
"supportedGenerationMethods": ["generateContent", "streamGenerateContent"],
|
74 |
-
"temperature": 1.0,
|
75 |
-
"maxTemperature": 2.0,
|
76 |
-
"topP": 0.95,
|
77 |
-
"topK": 64
|
78 |
-
},
|
79 |
-
{
|
80 |
-
"name": "models/gemini-2.5-flash-preview-05-20",
|
81 |
-
"version": "001",
|
82 |
-
"displayName": "Gemini 2.5 Flash Preview 05-20",
|
83 |
-
"description": "Preview version of Gemini 2.5 Flash from May 20th",
|
84 |
-
"inputTokenLimit": 1048576,
|
85 |
-
"outputTokenLimit": 65535,
|
86 |
-
"supportedGenerationMethods": ["generateContent", "streamGenerateContent"],
|
87 |
-
"temperature": 1.0,
|
88 |
-
"maxTemperature": 2.0,
|
89 |
-
"topP": 0.95,
|
90 |
-
"topK": 64
|
91 |
-
},
|
92 |
-
{
|
93 |
-
"name": "models/gemini-2.5-flash-preview-04-17",
|
94 |
-
"version": "001",
|
95 |
-
"displayName": "Gemini 2.5 Flash Preview 04-17",
|
96 |
-
"description": "Preview version of Gemini 2.5 Flash from April 17th",
|
97 |
-
"inputTokenLimit": 1048576,
|
98 |
-
"outputTokenLimit": 65535,
|
99 |
-
"supportedGenerationMethods": ["generateContent", "streamGenerateContent"],
|
100 |
-
"temperature": 1.0,
|
101 |
-
"maxTemperature": 2.0,
|
102 |
-
"topP": 0.95,
|
103 |
-
"topK": 64
|
104 |
-
},
|
105 |
-
{
|
106 |
-
"name": "models/gemini-2.5-flash",
|
107 |
-
"version": "001",
|
108 |
-
"displayName": "Gemini 2.5 Flash",
|
109 |
-
"description": "Fast and efficient multimodal model with latest improvements",
|
110 |
-
"inputTokenLimit": 1048576,
|
111 |
-
"outputTokenLimit": 65535,
|
112 |
-
"supportedGenerationMethods": ["generateContent", "streamGenerateContent"],
|
113 |
-
"temperature": 1.0,
|
114 |
-
"maxTemperature": 2.0,
|
115 |
-
"topP": 0.95,
|
116 |
-
"topK": 64
|
117 |
-
}
|
118 |
-
]
|
119 |
-
|
120 |
-
# Generate search variants for applicable models
|
121 |
-
def _generate_search_variants():
|
122 |
-
"""Generate search variants for models that support content generation."""
|
123 |
-
search_models = []
|
124 |
-
for model in BASE_MODELS:
|
125 |
-
# Only add search variants for models that support content generation
|
126 |
-
if "generateContent" in model["supportedGenerationMethods"]:
|
127 |
-
search_variant = model.copy()
|
128 |
-
search_variant["name"] = model["name"] + "-search"
|
129 |
-
search_variant["displayName"] = model["displayName"] + " with Google Search"
|
130 |
-
search_variant["description"] = model["description"] + " (includes Google Search grounding)"
|
131 |
-
search_models.append(search_variant)
|
132 |
-
return search_models
|
133 |
-
|
134 |
-
# Generate thinking variants for applicable models
|
135 |
-
def _generate_thinking_variants():
|
136 |
-
"""Generate nothinking and maxthinking variants for models that support thinking."""
|
137 |
-
thinking_models = []
|
138 |
-
for model in BASE_MODELS:
|
139 |
-
# Only add thinking variants for models that support content generation
|
140 |
-
# and contain "gemini-2.5-flash" or "gemini-2.5-pro" in their name
|
141 |
-
if ("generateContent" in model["supportedGenerationMethods"] and
|
142 |
-
("gemini-2.5-flash" in model["name"] or "gemini-2.5-pro" in model["name"])):
|
143 |
-
|
144 |
-
# Add -nothinking variant
|
145 |
-
nothinking_variant = model.copy()
|
146 |
-
nothinking_variant["name"] = model["name"] + "-nothinking"
|
147 |
-
nothinking_variant["displayName"] = model["displayName"] + " (No Thinking)"
|
148 |
-
nothinking_variant["description"] = model["description"] + " (thinking disabled)"
|
149 |
-
thinking_models.append(nothinking_variant)
|
150 |
-
|
151 |
-
# Add -maxthinking variant
|
152 |
-
maxthinking_variant = model.copy()
|
153 |
-
maxthinking_variant["name"] = model["name"] + "-maxthinking"
|
154 |
-
maxthinking_variant["displayName"] = model["displayName"] + " (Max Thinking)"
|
155 |
-
maxthinking_variant["description"] = model["description"] + " (maximum thinking budget)"
|
156 |
-
thinking_models.append(maxthinking_variant)
|
157 |
-
return thinking_models
|
158 |
-
|
159 |
-
# Generate combined variants (search + thinking combinations)
|
160 |
-
def _generate_combined_variants():
|
161 |
-
"""Generate combined search and thinking variants."""
|
162 |
-
combined_models = []
|
163 |
-
for model in BASE_MODELS:
|
164 |
-
# Only add combined variants for models that support content generation
|
165 |
-
# and contain "gemini-2.5-flash" or "gemini-2.5-pro" in their name
|
166 |
-
if ("generateContent" in model["supportedGenerationMethods"] and
|
167 |
-
("gemini-2.5-flash" in model["name"] or "gemini-2.5-pro" in model["name"])):
|
168 |
-
|
169 |
-
# search + nothinking
|
170 |
-
search_nothinking = model.copy()
|
171 |
-
search_nothinking["name"] = model["name"] + "-search-nothinking"
|
172 |
-
search_nothinking["displayName"] = model["displayName"] + " with Google Search (No Thinking)"
|
173 |
-
search_nothinking["description"] = model["description"] + " (includes Google Search grounding, thinking disabled)"
|
174 |
-
combined_models.append(search_nothinking)
|
175 |
-
|
176 |
-
# search + maxthinking
|
177 |
-
search_maxthinking = model.copy()
|
178 |
-
search_maxthinking["name"] = model["name"] + "-search-maxthinking"
|
179 |
-
search_maxthinking["displayName"] = model["displayName"] + " with Google Search (Max Thinking)"
|
180 |
-
search_maxthinking["description"] = model["description"] + " (includes Google Search grounding, maximum thinking budget)"
|
181 |
-
combined_models.append(search_maxthinking)
|
182 |
-
return combined_models
|
183 |
-
|
184 |
-
# Supported Models (includes base models, search variants, and thinking variants)
|
185 |
-
# Combine all models and then sort them by name to group variants together
|
186 |
-
all_models = BASE_MODELS + _generate_search_variants() + _generate_thinking_variants()
|
187 |
-
SUPPORTED_MODELS = sorted(all_models, key=lambda x: x['name'])
|
188 |
-
|
189 |
-
# Helper function to get base model name from any variant
|
190 |
-
def get_base_model_name(model_name):
|
191 |
-
"""Convert variant model name to base model name."""
|
192 |
-
# Remove all possible suffixes in order
|
193 |
-
suffixes = ["-maxthinking", "-nothinking", "-search"]
|
194 |
-
for suffix in suffixes:
|
195 |
-
if model_name.endswith(suffix):
|
196 |
-
return model_name[:-len(suffix)]
|
197 |
-
return model_name
|
198 |
-
|
199 |
-
# Helper function to check if model uses search grounding
|
200 |
-
def is_search_model(model_name):
|
201 |
-
"""Check if model name indicates search grounding should be enabled."""
|
202 |
-
return "-search" in model_name
|
203 |
-
|
204 |
-
# Helper function to check if model uses no thinking
|
205 |
-
def is_nothinking_model(model_name):
|
206 |
-
"""Check if model name indicates thinking should be disabled."""
|
207 |
-
return "-nothinking" in model_name
|
208 |
-
|
209 |
-
# Helper function to check if model uses max thinking
|
210 |
-
def is_maxthinking_model(model_name):
|
211 |
-
"""Check if model name indicates maximum thinking budget should be used."""
|
212 |
-
return "-maxthinking" in model_name
|
213 |
-
|
214 |
-
# Helper function to get thinking budget for a model
|
215 |
-
def get_thinking_budget(model_name):
|
216 |
-
"""Get the appropriate thinking budget for a model based on its name and variant."""
|
217 |
-
base_model = get_base_model_name(model_name)
|
218 |
-
|
219 |
-
if is_nothinking_model(model_name):
|
220 |
-
if "gemini-2.5-flash" in base_model:
|
221 |
-
return 0 # No thinking for flash
|
222 |
-
elif "gemini-2.5-pro" in base_model:
|
223 |
-
return 128 # Limited thinking for pro
|
224 |
-
elif is_maxthinking_model(model_name):
|
225 |
-
if "gemini-2.5-flash" in base_model:
|
226 |
-
return 24576
|
227 |
-
elif "gemini-2.5-pro" in base_model:
|
228 |
-
return 32768
|
229 |
-
else:
|
230 |
-
# Default thinking budget for regular models
|
231 |
-
return -1 # Default for all models
|
232 |
-
|
233 |
-
# Helper function to check if thinking should be included in output
|
234 |
-
def should_include_thoughts(model_name):
|
235 |
-
"""Check if thoughts should be included in the response."""
|
236 |
-
if is_nothinking_model(model_name):
|
237 |
-
# For nothinking mode, still include thoughts if it's a pro model
|
238 |
-
base_model = get_base_model_name(model_name)
|
239 |
-
return "gemini-2.5-pro" in base_model
|
240 |
-
else:
|
241 |
-
# For all other modes, include thoughts
|
242 |
-
return True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/gemini_routes.py
DELETED
@@ -1,186 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
Gemini API Routes - Handles native Gemini API endpoints.
|
3 |
-
This module provides native Gemini API endpoints that proxy directly to Google's API
|
4 |
-
without any format transformations.
|
5 |
-
"""
|
6 |
-
import json
|
7 |
-
import logging
|
8 |
-
from fastapi import APIRouter, Request, Response, Depends
|
9 |
-
|
10 |
-
from .auth import authenticate_user
|
11 |
-
from .google_api_client import send_gemini_request, build_gemini_payload_from_native
|
12 |
-
from .config import SUPPORTED_MODELS
|
13 |
-
|
14 |
-
router = APIRouter()
|
15 |
-
|
16 |
-
|
17 |
-
@router.get("/v1beta/models")
|
18 |
-
async def gemini_list_models(request: Request, username: str = Depends(authenticate_user)):
|
19 |
-
"""
|
20 |
-
Native Gemini models endpoint.
|
21 |
-
Returns available models in Gemini format, matching the official Gemini API.
|
22 |
-
"""
|
23 |
-
|
24 |
-
try:
|
25 |
-
logging.info("Gemini models list requested")
|
26 |
-
|
27 |
-
models_response = {
|
28 |
-
"models": SUPPORTED_MODELS
|
29 |
-
}
|
30 |
-
|
31 |
-
logging.info(f"Returning {len(SUPPORTED_MODELS)} Gemini models")
|
32 |
-
return Response(
|
33 |
-
content=json.dumps(models_response),
|
34 |
-
status_code=200,
|
35 |
-
media_type="application/json; charset=utf-8"
|
36 |
-
)
|
37 |
-
except Exception as e:
|
38 |
-
logging.error(f"Failed to list Gemini models: {str(e)}")
|
39 |
-
return Response(
|
40 |
-
content=json.dumps({
|
41 |
-
"error": {
|
42 |
-
"message": f"Failed to list models: {str(e)}",
|
43 |
-
"code": 500
|
44 |
-
}
|
45 |
-
}),
|
46 |
-
status_code=500,
|
47 |
-
media_type="application/json"
|
48 |
-
)
|
49 |
-
|
50 |
-
|
51 |
-
@router.api_route("/{full_path:path}", methods=["GET", "POST", "PUT", "DELETE", "PATCH"])
|
52 |
-
async def gemini_proxy(request: Request, full_path: str, username: str = Depends(authenticate_user)):
|
53 |
-
"""
|
54 |
-
Native Gemini API proxy endpoint.
|
55 |
-
Handles all native Gemini API calls by proxying them directly to Google's API.
|
56 |
-
|
57 |
-
This endpoint handles paths like:
|
58 |
-
- /v1beta/models/{model}/generateContent
|
59 |
-
- /v1beta/models/{model}/streamGenerateContent
|
60 |
-
- /v1/models/{model}/generateContent
|
61 |
-
- etc.
|
62 |
-
"""
|
63 |
-
|
64 |
-
try:
|
65 |
-
# Get the request body
|
66 |
-
post_data = await request.body()
|
67 |
-
|
68 |
-
# Determine if this is a streaming request
|
69 |
-
is_streaming = "stream" in full_path.lower()
|
70 |
-
|
71 |
-
# Extract model name from the path
|
72 |
-
# Paths typically look like: v1beta/models/gemini-1.5-pro/generateContent
|
73 |
-
model_name = _extract_model_from_path(full_path)
|
74 |
-
|
75 |
-
logging.info(f"Gemini proxy request: path={full_path}, model={model_name}, stream={is_streaming}")
|
76 |
-
|
77 |
-
if not model_name:
|
78 |
-
logging.error(f"Could not extract model name from path: {full_path}")
|
79 |
-
return Response(
|
80 |
-
content=json.dumps({
|
81 |
-
"error": {
|
82 |
-
"message": f"Could not extract model name from path: {full_path}",
|
83 |
-
"code": 400
|
84 |
-
}
|
85 |
-
}),
|
86 |
-
status_code=400,
|
87 |
-
media_type="application/json"
|
88 |
-
)
|
89 |
-
|
90 |
-
# Parse the incoming request
|
91 |
-
try:
|
92 |
-
if post_data:
|
93 |
-
incoming_request = json.loads(post_data)
|
94 |
-
else:
|
95 |
-
incoming_request = {}
|
96 |
-
except json.JSONDecodeError as e:
|
97 |
-
logging.error(f"Invalid JSON in request body: {str(e)}")
|
98 |
-
return Response(
|
99 |
-
content=json.dumps({
|
100 |
-
"error": {
|
101 |
-
"message": "Invalid JSON in request body",
|
102 |
-
"code": 400
|
103 |
-
}
|
104 |
-
}),
|
105 |
-
status_code=400,
|
106 |
-
media_type="application/json"
|
107 |
-
)
|
108 |
-
|
109 |
-
# Build the payload for Google API
|
110 |
-
gemini_payload = build_gemini_payload_from_native(incoming_request, model_name)
|
111 |
-
|
112 |
-
# Send the request to Google API
|
113 |
-
response = send_gemini_request(gemini_payload, is_streaming=is_streaming)
|
114 |
-
|
115 |
-
# Log the response status
|
116 |
-
if hasattr(response, 'status_code'):
|
117 |
-
if response.status_code != 200:
|
118 |
-
logging.error(f"Gemini API returned error: status={response.status_code}")
|
119 |
-
else:
|
120 |
-
logging.info(f"Successfully processed Gemini request for model: {model_name}")
|
121 |
-
|
122 |
-
return response
|
123 |
-
|
124 |
-
except Exception as e:
|
125 |
-
logging.error(f"Gemini proxy error: {str(e)}")
|
126 |
-
return Response(
|
127 |
-
content=json.dumps({
|
128 |
-
"error": {
|
129 |
-
"message": f"Proxy error: {str(e)}",
|
130 |
-
"code": 500
|
131 |
-
}
|
132 |
-
}),
|
133 |
-
status_code=500,
|
134 |
-
media_type="application/json"
|
135 |
-
)
|
136 |
-
|
137 |
-
|
138 |
-
def _extract_model_from_path(path: str) -> str:
|
139 |
-
"""
|
140 |
-
Extract the model name from a Gemini API path.
|
141 |
-
|
142 |
-
Examples:
|
143 |
-
- "v1beta/models/gemini-1.5-pro/generateContent" -> "gemini-1.5-pro"
|
144 |
-
- "v1/models/gemini-2.0-flash/streamGenerateContent" -> "gemini-2.0-flash"
|
145 |
-
|
146 |
-
Args:
|
147 |
-
path: The API path
|
148 |
-
|
149 |
-
Returns:
|
150 |
-
Model name (just the model name, not prefixed with "models/") or None if not found
|
151 |
-
"""
|
152 |
-
parts = path.split('/')
|
153 |
-
|
154 |
-
# Look for the pattern: .../models/{model_name}/...
|
155 |
-
try:
|
156 |
-
models_index = parts.index('models')
|
157 |
-
if models_index + 1 < len(parts):
|
158 |
-
model_name = parts[models_index + 1]
|
159 |
-
# Remove any action suffix like ":streamGenerateContent" or ":generateContent"
|
160 |
-
if ':' in model_name:
|
161 |
-
model_name = model_name.split(':')[0]
|
162 |
-
# Return just the model name without "models/" prefix
|
163 |
-
return model_name
|
164 |
-
except ValueError:
|
165 |
-
pass
|
166 |
-
|
167 |
-
# If we can't find the pattern, return None
|
168 |
-
return None
|
169 |
-
|
170 |
-
|
171 |
-
@router.get("/v1/models")
|
172 |
-
async def gemini_list_models_v1(request: Request, username: str = Depends(authenticate_user)):
|
173 |
-
"""
|
174 |
-
Alternative models endpoint for v1 API version.
|
175 |
-
Some clients might use /v1/models instead of /v1beta/models.
|
176 |
-
"""
|
177 |
-
return await gemini_list_models(request, username)
|
178 |
-
|
179 |
-
|
180 |
-
# Health check endpoint
|
181 |
-
@router.get("/health")
|
182 |
-
async def health_check():
|
183 |
-
"""
|
184 |
-
Simple health check endpoint.
|
185 |
-
"""
|
186 |
-
return {"status": "healthy", "service": "geminicli2api"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/google_api_client.py
DELETED
@@ -1,335 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
Google API Client - Handles all communication with Google's Gemini API.
|
3 |
-
This module is used by both OpenAI compatibility layer and native Gemini endpoints.
|
4 |
-
"""
|
5 |
-
import json
|
6 |
-
import logging
|
7 |
-
import requests
|
8 |
-
from fastapi import Response
|
9 |
-
from fastapi.responses import StreamingResponse
|
10 |
-
from google.auth.transport.requests import Request as GoogleAuthRequest
|
11 |
-
|
12 |
-
from .auth import get_credentials, save_credentials, get_user_project_id, onboard_user
|
13 |
-
from .utils import get_user_agent
|
14 |
-
from .config import (
|
15 |
-
CODE_ASSIST_ENDPOINT,
|
16 |
-
DEFAULT_SAFETY_SETTINGS,
|
17 |
-
get_base_model_name,
|
18 |
-
is_search_model,
|
19 |
-
get_thinking_budget,
|
20 |
-
should_include_thoughts
|
21 |
-
)
|
22 |
-
import asyncio
|
23 |
-
|
24 |
-
|
25 |
-
def send_gemini_request(payload: dict, is_streaming: bool = False) -> Response:
|
26 |
-
"""
|
27 |
-
Send a request to Google's Gemini API.
|
28 |
-
|
29 |
-
Args:
|
30 |
-
payload: The request payload in Gemini format
|
31 |
-
is_streaming: Whether this is a streaming request
|
32 |
-
|
33 |
-
Returns:
|
34 |
-
FastAPI Response object
|
35 |
-
"""
|
36 |
-
# Get and validate credentials
|
37 |
-
creds = get_credentials()
|
38 |
-
if not creds:
|
39 |
-
return Response(
|
40 |
-
content="Authentication failed. Please restart the proxy to log in.",
|
41 |
-
status_code=500
|
42 |
-
)
|
43 |
-
|
44 |
-
|
45 |
-
# Refresh credentials if needed
|
46 |
-
if creds.expired and creds.refresh_token:
|
47 |
-
try:
|
48 |
-
creds.refresh(GoogleAuthRequest())
|
49 |
-
save_credentials(creds)
|
50 |
-
except Exception as e:
|
51 |
-
return Response(
|
52 |
-
content="Token refresh failed. Please restart the proxy to re-authenticate.",
|
53 |
-
status_code=500
|
54 |
-
)
|
55 |
-
elif not creds.token:
|
56 |
-
return Response(
|
57 |
-
content="No access token. Please restart the proxy to re-authenticate.",
|
58 |
-
status_code=500
|
59 |
-
)
|
60 |
-
|
61 |
-
# Get project ID and onboard user
|
62 |
-
proj_id = get_user_project_id(creds)
|
63 |
-
if not proj_id:
|
64 |
-
return Response(content="Failed to get user project ID.", status_code=500)
|
65 |
-
|
66 |
-
onboard_user(creds, proj_id)
|
67 |
-
|
68 |
-
# Build the final payload with project info
|
69 |
-
final_payload = {
|
70 |
-
"model": payload.get("model"),
|
71 |
-
"project": proj_id,
|
72 |
-
"request": payload.get("request", {})
|
73 |
-
}
|
74 |
-
|
75 |
-
# Determine the action and URL
|
76 |
-
action = "streamGenerateContent" if is_streaming else "generateContent"
|
77 |
-
target_url = f"{CODE_ASSIST_ENDPOINT}/v1internal:{action}"
|
78 |
-
if is_streaming:
|
79 |
-
target_url += "?alt=sse"
|
80 |
-
|
81 |
-
# Build request headers
|
82 |
-
request_headers = {
|
83 |
-
"Authorization": f"Bearer {creds.token}",
|
84 |
-
"Content-Type": "application/json",
|
85 |
-
"User-Agent": get_user_agent(),
|
86 |
-
}
|
87 |
-
|
88 |
-
final_post_data = json.dumps(final_payload)
|
89 |
-
|
90 |
-
# Send the request
|
91 |
-
try:
|
92 |
-
if is_streaming:
|
93 |
-
resp = requests.post(target_url, data=final_post_data, headers=request_headers, stream=True)
|
94 |
-
return _handle_streaming_response(resp)
|
95 |
-
else:
|
96 |
-
resp = requests.post(target_url, data=final_post_data, headers=request_headers)
|
97 |
-
return _handle_non_streaming_response(resp)
|
98 |
-
except requests.exceptions.RequestException as e:
|
99 |
-
logging.error(f"Request to Google API failed: {str(e)}")
|
100 |
-
return Response(
|
101 |
-
content=json.dumps({"error": {"message": f"Request failed: {str(e)}"}}),
|
102 |
-
status_code=500,
|
103 |
-
media_type="application/json"
|
104 |
-
)
|
105 |
-
except Exception as e:
|
106 |
-
logging.error(f"Unexpected error during Google API request: {str(e)}")
|
107 |
-
return Response(
|
108 |
-
content=json.dumps({"error": {"message": f"Unexpected error: {str(e)}"}}),
|
109 |
-
status_code=500,
|
110 |
-
media_type="application/json"
|
111 |
-
)
|
112 |
-
|
113 |
-
|
114 |
-
def _handle_streaming_response(resp) -> StreamingResponse:
|
115 |
-
"""Handle streaming response from Google API."""
|
116 |
-
|
117 |
-
# Check for HTTP errors before starting to stream
|
118 |
-
if resp.status_code != 200:
|
119 |
-
logging.error(f"Google API returned status {resp.status_code}: {resp.text}")
|
120 |
-
error_message = f"Google API error: {resp.status_code}"
|
121 |
-
try:
|
122 |
-
error_data = resp.json()
|
123 |
-
if "error" in error_data:
|
124 |
-
error_message = error_data["error"].get("message", error_message)
|
125 |
-
except:
|
126 |
-
pass
|
127 |
-
|
128 |
-
# Return error as a streaming response
|
129 |
-
async def error_generator():
|
130 |
-
error_response = {
|
131 |
-
"error": {
|
132 |
-
"message": error_message,
|
133 |
-
"type": "invalid_request_error" if resp.status_code == 404 else "api_error",
|
134 |
-
"code": resp.status_code
|
135 |
-
}
|
136 |
-
}
|
137 |
-
yield f'data: {json.dumps(error_response)}\n\n'.encode('utf-8')
|
138 |
-
|
139 |
-
response_headers = {
|
140 |
-
"Content-Type": "text/event-stream",
|
141 |
-
"Content-Disposition": "attachment",
|
142 |
-
"Vary": "Origin, X-Origin, Referer",
|
143 |
-
"X-XSS-Protection": "0",
|
144 |
-
"X-Frame-Options": "SAMEORIGIN",
|
145 |
-
"X-Content-Type-Options": "nosniff",
|
146 |
-
"Server": "ESF"
|
147 |
-
}
|
148 |
-
|
149 |
-
return StreamingResponse(
|
150 |
-
error_generator(),
|
151 |
-
media_type="text/event-stream",
|
152 |
-
headers=response_headers,
|
153 |
-
status_code=resp.status_code
|
154 |
-
)
|
155 |
-
|
156 |
-
async def stream_generator():
|
157 |
-
try:
|
158 |
-
with resp:
|
159 |
-
for chunk in resp.iter_lines():
|
160 |
-
if chunk:
|
161 |
-
if not isinstance(chunk, str):
|
162 |
-
chunk = chunk.decode('utf-8')
|
163 |
-
|
164 |
-
if chunk.startswith('data: '):
|
165 |
-
chunk = chunk[len('data: '):]
|
166 |
-
|
167 |
-
try:
|
168 |
-
obj = json.loads(chunk)
|
169 |
-
|
170 |
-
if "response" in obj:
|
171 |
-
response_chunk = obj["response"]
|
172 |
-
response_json = json.dumps(response_chunk, separators=(',', ':'))
|
173 |
-
response_line = f"data: {response_json}\n\n"
|
174 |
-
yield response_line.encode('utf-8')
|
175 |
-
await asyncio.sleep(0)
|
176 |
-
else:
|
177 |
-
obj_json = json.dumps(obj, separators=(',', ':'))
|
178 |
-
yield f"data: {obj_json}\n\n".encode('utf-8')
|
179 |
-
except json.JSONDecodeError:
|
180 |
-
continue
|
181 |
-
|
182 |
-
except requests.exceptions.RequestException as e:
|
183 |
-
logging.error(f"Streaming request failed: {str(e)}")
|
184 |
-
error_response = {
|
185 |
-
"error": {
|
186 |
-
"message": f"Upstream request failed: {str(e)}",
|
187 |
-
"type": "api_error",
|
188 |
-
"code": 502
|
189 |
-
}
|
190 |
-
}
|
191 |
-
yield f'data: {json.dumps(error_response)}\n\n'.encode('utf-8')
|
192 |
-
except Exception as e:
|
193 |
-
logging.error(f"Unexpected error during streaming: {str(e)}")
|
194 |
-
error_response = {
|
195 |
-
"error": {
|
196 |
-
"message": f"An unexpected error occurred: {str(e)}",
|
197 |
-
"type": "api_error",
|
198 |
-
"code": 500
|
199 |
-
}
|
200 |
-
}
|
201 |
-
yield f'data: {json.dumps(error_response)}\n\n'.encode('utf-8')
|
202 |
-
|
203 |
-
response_headers = {
|
204 |
-
"Content-Type": "text/event-stream",
|
205 |
-
"Content-Disposition": "attachment",
|
206 |
-
"Vary": "Origin, X-Origin, Referer",
|
207 |
-
"X-XSS-Protection": "0",
|
208 |
-
"X-Frame-Options": "SAMEORIGIN",
|
209 |
-
"X-Content-Type-Options": "nosniff",
|
210 |
-
"Server": "ESF"
|
211 |
-
}
|
212 |
-
|
213 |
-
return StreamingResponse(
|
214 |
-
stream_generator(),
|
215 |
-
media_type="text/event-stream",
|
216 |
-
headers=response_headers
|
217 |
-
)
|
218 |
-
|
219 |
-
|
220 |
-
def _handle_non_streaming_response(resp) -> Response:
|
221 |
-
"""Handle non-streaming response from Google API."""
|
222 |
-
if resp.status_code == 200:
|
223 |
-
try:
|
224 |
-
google_api_response = resp.text
|
225 |
-
if google_api_response.startswith('data: '):
|
226 |
-
google_api_response = google_api_response[len('data: '):]
|
227 |
-
google_api_response = json.loads(google_api_response)
|
228 |
-
standard_gemini_response = google_api_response.get("response")
|
229 |
-
return Response(
|
230 |
-
content=json.dumps(standard_gemini_response),
|
231 |
-
status_code=200,
|
232 |
-
media_type="application/json; charset=utf-8"
|
233 |
-
)
|
234 |
-
except (json.JSONDecodeError, AttributeError) as e:
|
235 |
-
logging.error(f"Failed to parse Google API response: {str(e)}")
|
236 |
-
return Response(
|
237 |
-
content=resp.content,
|
238 |
-
status_code=resp.status_code,
|
239 |
-
media_type=resp.headers.get("Content-Type")
|
240 |
-
)
|
241 |
-
else:
|
242 |
-
# Log the error details
|
243 |
-
logging.error(f"Google API returned status {resp.status_code}: {resp.text}")
|
244 |
-
|
245 |
-
# Try to parse error response and provide meaningful error message
|
246 |
-
try:
|
247 |
-
error_data = resp.json()
|
248 |
-
if "error" in error_data:
|
249 |
-
error_message = error_data["error"].get("message", f"API error: {resp.status_code}")
|
250 |
-
error_response = {
|
251 |
-
"error": {
|
252 |
-
"message": error_message,
|
253 |
-
"type": "invalid_request_error" if resp.status_code == 404 else "api_error",
|
254 |
-
"code": resp.status_code
|
255 |
-
}
|
256 |
-
}
|
257 |
-
return Response(
|
258 |
-
content=json.dumps(error_response),
|
259 |
-
status_code=resp.status_code,
|
260 |
-
media_type="application/json"
|
261 |
-
)
|
262 |
-
except (json.JSONDecodeError, KeyError):
|
263 |
-
pass
|
264 |
-
|
265 |
-
# Fallback to original response if we can't parse the error
|
266 |
-
return Response(
|
267 |
-
content=resp.content,
|
268 |
-
status_code=resp.status_code,
|
269 |
-
media_type=resp.headers.get("Content-Type")
|
270 |
-
)
|
271 |
-
|
272 |
-
|
273 |
-
def build_gemini_payload_from_openai(openai_payload: dict) -> dict:
|
274 |
-
"""
|
275 |
-
Build a Gemini API payload from an OpenAI-transformed request.
|
276 |
-
This is used when OpenAI requests are converted to Gemini format.
|
277 |
-
"""
|
278 |
-
# Extract model from the payload
|
279 |
-
model = openai_payload.get("model")
|
280 |
-
|
281 |
-
# Get safety settings or use defaults
|
282 |
-
safety_settings = openai_payload.get("safetySettings", DEFAULT_SAFETY_SETTINGS)
|
283 |
-
|
284 |
-
# Build the request portion
|
285 |
-
request_data = {
|
286 |
-
"contents": openai_payload.get("contents"),
|
287 |
-
"systemInstruction": openai_payload.get("systemInstruction"),
|
288 |
-
"cachedContent": openai_payload.get("cachedContent"),
|
289 |
-
"tools": openai_payload.get("tools"),
|
290 |
-
"toolConfig": openai_payload.get("toolConfig"),
|
291 |
-
"safetySettings": safety_settings,
|
292 |
-
"generationConfig": openai_payload.get("generationConfig", {}),
|
293 |
-
}
|
294 |
-
|
295 |
-
# Remove any keys with None values
|
296 |
-
request_data = {k: v for k, v in request_data.items() if v is not None}
|
297 |
-
|
298 |
-
return {
|
299 |
-
"model": model,
|
300 |
-
"request": request_data
|
301 |
-
}
|
302 |
-
|
303 |
-
|
304 |
-
def build_gemini_payload_from_native(native_request: dict, model_from_path: str) -> dict:
|
305 |
-
"""
|
306 |
-
Build a Gemini API payload from a native Gemini request.
|
307 |
-
This is used for direct Gemini API calls.
|
308 |
-
"""
|
309 |
-
native_request["safetySettings"] = DEFAULT_SAFETY_SETTINGS
|
310 |
-
|
311 |
-
if "generationConfig" not in native_request:
|
312 |
-
native_request["generationConfig"] = {}
|
313 |
-
|
314 |
-
if "thinkingConfig" not in native_request["generationConfig"]:
|
315 |
-
native_request["generationConfig"]["thinkingConfig"] = {}
|
316 |
-
|
317 |
-
# Configure thinking based on model variant
|
318 |
-
thinking_budget = get_thinking_budget(model_from_path)
|
319 |
-
include_thoughts = should_include_thoughts(model_from_path)
|
320 |
-
|
321 |
-
native_request["generationConfig"]["thinkingConfig"]["includeThoughts"] = include_thoughts
|
322 |
-
native_request["generationConfig"]["thinkingConfig"]["thinkingBudget"] = thinking_budget
|
323 |
-
|
324 |
-
# Add Google Search grounding for search models
|
325 |
-
if is_search_model(model_from_path):
|
326 |
-
if "tools" not in native_request:
|
327 |
-
native_request["tools"] = []
|
328 |
-
# Add googleSearch tool if not already present
|
329 |
-
if not any(tool.get("googleSearch") for tool in native_request["tools"]):
|
330 |
-
native_request["tools"].append({"googleSearch": {}})
|
331 |
-
|
332 |
-
return {
|
333 |
-
"model": get_base_model_name(model_from_path), # Use base model name for API call
|
334 |
-
"request": native_request
|
335 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/main.py
DELETED
@@ -1,143 +0,0 @@
|
|
1 |
-
import logging
|
2 |
-
import os
|
3 |
-
from fastapi import FastAPI, Request, Response
|
4 |
-
from fastapi.middleware.cors import CORSMiddleware
|
5 |
-
from .gemini_routes import router as gemini_router
|
6 |
-
from .openai_routes import router as openai_router
|
7 |
-
from .auth import get_credentials, get_user_project_id, onboard_user
|
8 |
-
|
9 |
-
# Load environment variables from .env file
|
10 |
-
try:
|
11 |
-
from dotenv import load_dotenv
|
12 |
-
load_dotenv()
|
13 |
-
logging.info("Environment variables loaded from .env file")
|
14 |
-
except ImportError:
|
15 |
-
logging.warning("python-dotenv not installed, .env file will not be loaded automatically")
|
16 |
-
except Exception as e:
|
17 |
-
logging.warning(f"Could not load .env file: {e}")
|
18 |
-
|
19 |
-
# Configure logging
|
20 |
-
logging.basicConfig(
|
21 |
-
level=logging.INFO,
|
22 |
-
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
23 |
-
)
|
24 |
-
|
25 |
-
app = FastAPI()
|
26 |
-
|
27 |
-
# Add CORS middleware for preflight requests
|
28 |
-
app.add_middleware(
|
29 |
-
CORSMiddleware,
|
30 |
-
allow_origins=["*"], # Allow all origins
|
31 |
-
allow_credentials=True,
|
32 |
-
allow_methods=["*"], # Allow all methods
|
33 |
-
allow_headers=["*"], # Allow all headers
|
34 |
-
)
|
35 |
-
|
36 |
-
@app.on_event("startup")
|
37 |
-
async def startup_event():
|
38 |
-
try:
|
39 |
-
logging.info("Starting Gemini proxy server...")
|
40 |
-
|
41 |
-
# Check if credentials exist
|
42 |
-
import os
|
43 |
-
from .config import CREDENTIAL_FILE
|
44 |
-
|
45 |
-
env_creds_json = os.getenv("GEMINI_CREDENTIALS")
|
46 |
-
creds_file_exists = os.path.exists(CREDENTIAL_FILE)
|
47 |
-
|
48 |
-
if env_creds_json or creds_file_exists:
|
49 |
-
try:
|
50 |
-
# Try to load existing credentials without OAuth flow first
|
51 |
-
creds = get_credentials(allow_oauth_flow=False)
|
52 |
-
if creds:
|
53 |
-
try:
|
54 |
-
proj_id = get_user_project_id(creds)
|
55 |
-
if proj_id:
|
56 |
-
onboard_user(creds, proj_id)
|
57 |
-
logging.info(f"Successfully onboarded with project ID: {proj_id}")
|
58 |
-
logging.info("Gemini proxy server started successfully")
|
59 |
-
logging.info("Authentication required - Password: see .env file")
|
60 |
-
except Exception as e:
|
61 |
-
logging.error(f"Setup failed: {str(e)}")
|
62 |
-
logging.warning("Server started but may not function properly until setup issues are resolved.")
|
63 |
-
else:
|
64 |
-
logging.warning("Credentials file exists but could not be loaded. Server started - authentication will be required on first request.")
|
65 |
-
except Exception as e:
|
66 |
-
logging.error(f"Credential loading error: {str(e)}")
|
67 |
-
logging.warning("Server started but credentials need to be set up.")
|
68 |
-
else:
|
69 |
-
# No credentials found - prompt user to authenticate
|
70 |
-
logging.info("No credentials found. Starting OAuth authentication flow...")
|
71 |
-
try:
|
72 |
-
creds = get_credentials(allow_oauth_flow=True)
|
73 |
-
if creds:
|
74 |
-
try:
|
75 |
-
proj_id = get_user_project_id(creds)
|
76 |
-
if proj_id:
|
77 |
-
onboard_user(creds, proj_id)
|
78 |
-
logging.info(f"Successfully onboarded with project ID: {proj_id}")
|
79 |
-
logging.info("Gemini proxy server started successfully")
|
80 |
-
except Exception as e:
|
81 |
-
logging.error(f"Setup failed: {str(e)}")
|
82 |
-
logging.warning("Server started but may not function properly until setup issues are resolved.")
|
83 |
-
else:
|
84 |
-
logging.error("Authentication failed. Server started but will not function until credentials are provided.")
|
85 |
-
except Exception as e:
|
86 |
-
logging.error(f"Authentication error: {str(e)}")
|
87 |
-
logging.warning("Server started but authentication failed.")
|
88 |
-
|
89 |
-
logging.info("Authentication required - Password: see .env file")
|
90 |
-
|
91 |
-
except Exception as e:
|
92 |
-
logging.error(f"Startup error: {str(e)}")
|
93 |
-
logging.warning("Server may not function properly.")
|
94 |
-
|
95 |
-
@app.options("/{full_path:path}")
|
96 |
-
async def handle_preflight(request: Request, full_path: str):
|
97 |
-
"""Handle CORS preflight requests without authentication."""
|
98 |
-
return Response(
|
99 |
-
status_code=200,
|
100 |
-
headers={
|
101 |
-
"Access-Control-Allow-Origin": "*",
|
102 |
-
"Access-Control-Allow-Methods": "GET, POST, PUT, DELETE, PATCH, OPTIONS",
|
103 |
-
"Access-Control-Allow-Headers": "*",
|
104 |
-
"Access-Control-Allow-Credentials": "true",
|
105 |
-
}
|
106 |
-
)
|
107 |
-
|
108 |
-
# Root endpoint - no authentication required
|
109 |
-
@app.get("/")
|
110 |
-
async def root():
|
111 |
-
"""
|
112 |
-
Root endpoint providing project information.
|
113 |
-
No authentication required.
|
114 |
-
"""
|
115 |
-
return {
|
116 |
-
"name": "geminicli2api",
|
117 |
-
"description": "OpenAI-compatible API proxy for Google's Gemini models via gemini-cli",
|
118 |
-
"purpose": "Provides both OpenAI-compatible endpoints (/v1/chat/completions) and native Gemini API endpoints for accessing Google's Gemini models",
|
119 |
-
"version": "1.0.0",
|
120 |
-
"endpoints": {
|
121 |
-
"openai_compatible": {
|
122 |
-
"chat_completions": "/v1/chat/completions",
|
123 |
-
"models": "/v1/models"
|
124 |
-
},
|
125 |
-
"native_gemini": {
|
126 |
-
"models": "/v1beta/models",
|
127 |
-
"generate": "/v1beta/models/{model}/generateContent",
|
128 |
-
"stream": "/v1beta/models/{model}/streamGenerateContent"
|
129 |
-
},
|
130 |
-
"health": "/health"
|
131 |
-
},
|
132 |
-
"authentication": "Required for all endpoints except root and health",
|
133 |
-
"repository": "https://github.com/user/geminicli2api"
|
134 |
-
}
|
135 |
-
|
136 |
-
# Health check endpoint for Docker/Hugging Face
|
137 |
-
@app.get("/health")
|
138 |
-
async def health_check():
|
139 |
-
"""Health check endpoint for container orchestration."""
|
140 |
-
return {"status": "healthy", "service": "geminicli2api"}
|
141 |
-
|
142 |
-
app.include_router(openai_router)
|
143 |
-
app.include_router(gemini_router)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/models.py
DELETED
@@ -1,72 +0,0 @@
|
|
1 |
-
from pydantic import BaseModel, Field
|
2 |
-
from typing import List, Optional, Union, Dict, Any
|
3 |
-
|
4 |
-
# OpenAI Models
|
5 |
-
class OpenAIChatMessage(BaseModel):
|
6 |
-
role: str
|
7 |
-
content: Union[str, List[Dict[str, Any]]]
|
8 |
-
reasoning_content: Optional[str] = None
|
9 |
-
|
10 |
-
class OpenAIChatCompletionRequest(BaseModel):
|
11 |
-
model: str
|
12 |
-
messages: List[OpenAIChatMessage]
|
13 |
-
stream: bool = False
|
14 |
-
temperature: Optional[float] = None
|
15 |
-
top_p: Optional[float] = None
|
16 |
-
max_tokens: Optional[int] = None
|
17 |
-
stop: Optional[Union[str, List[str]]] = None
|
18 |
-
frequency_penalty: Optional[float] = None
|
19 |
-
presence_penalty: Optional[float] = None
|
20 |
-
n: Optional[int] = None
|
21 |
-
seed: Optional[int] = None
|
22 |
-
response_format: Optional[Dict[str, Any]] = None
|
23 |
-
|
24 |
-
class Config:
|
25 |
-
extra = "allow" # Allow additional fields not explicitly defined
|
26 |
-
|
27 |
-
class OpenAIChatCompletionChoice(BaseModel):
|
28 |
-
index: int
|
29 |
-
message: OpenAIChatMessage
|
30 |
-
finish_reason: Optional[str] = None
|
31 |
-
|
32 |
-
class OpenAIChatCompletionResponse(BaseModel):
|
33 |
-
id: str
|
34 |
-
object: str
|
35 |
-
created: int
|
36 |
-
model: str
|
37 |
-
choices: List[OpenAIChatCompletionChoice]
|
38 |
-
|
39 |
-
class OpenAIDelta(BaseModel):
|
40 |
-
content: Optional[str] = None
|
41 |
-
reasoning_content: Optional[str] = None
|
42 |
-
|
43 |
-
class OpenAIChatCompletionStreamChoice(BaseModel):
|
44 |
-
index: int
|
45 |
-
delta: OpenAIDelta
|
46 |
-
finish_reason: Optional[str] = None
|
47 |
-
|
48 |
-
class OpenAIChatCompletionStreamResponse(BaseModel):
|
49 |
-
id: str
|
50 |
-
object: str
|
51 |
-
created: int
|
52 |
-
model: str
|
53 |
-
choices: List[OpenAIChatCompletionStreamChoice]
|
54 |
-
|
55 |
-
# Gemini Models
|
56 |
-
class GeminiPart(BaseModel):
|
57 |
-
text: str
|
58 |
-
|
59 |
-
class GeminiContent(BaseModel):
|
60 |
-
role: str
|
61 |
-
parts: List[GeminiPart]
|
62 |
-
|
63 |
-
class GeminiRequest(BaseModel):
|
64 |
-
contents: List[GeminiContent]
|
65 |
-
|
66 |
-
class GeminiCandidate(BaseModel):
|
67 |
-
content: GeminiContent
|
68 |
-
finish_reason: Optional[str] = None
|
69 |
-
index: int
|
70 |
-
|
71 |
-
class GeminiResponse(BaseModel):
|
72 |
-
candidates: List[GeminiCandidate]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/openai_routes.py
DELETED
@@ -1,305 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
OpenAI API Routes - Handles OpenAI-compatible endpoints.
|
3 |
-
This module provides OpenAI-compatible endpoints that transform requests/responses
|
4 |
-
and delegate to the Google API client.
|
5 |
-
"""
|
6 |
-
import json
|
7 |
-
import uuid
|
8 |
-
import asyncio
|
9 |
-
import logging
|
10 |
-
from fastapi import APIRouter, Request, Response, Depends
|
11 |
-
from fastapi.responses import StreamingResponse
|
12 |
-
|
13 |
-
from .auth import authenticate_user
|
14 |
-
from .models import OpenAIChatCompletionRequest
|
15 |
-
from .openai_transformers import (
|
16 |
-
openai_request_to_gemini,
|
17 |
-
gemini_response_to_openai,
|
18 |
-
gemini_stream_chunk_to_openai
|
19 |
-
)
|
20 |
-
from .google_api_client import send_gemini_request, build_gemini_payload_from_openai
|
21 |
-
|
22 |
-
router = APIRouter()
|
23 |
-
|
24 |
-
|
25 |
-
@router.post("/v1/chat/completions")
|
26 |
-
async def openai_chat_completions(
|
27 |
-
request: OpenAIChatCompletionRequest,
|
28 |
-
http_request: Request,
|
29 |
-
username: str = Depends(authenticate_user)
|
30 |
-
):
|
31 |
-
"""
|
32 |
-
OpenAI-compatible chat completions endpoint.
|
33 |
-
Transforms OpenAI requests to Gemini format, sends to Google API,
|
34 |
-
and transforms responses back to OpenAI format.
|
35 |
-
"""
|
36 |
-
|
37 |
-
try:
|
38 |
-
logging.info(f"OpenAI chat completion request: model={request.model}, stream={request.stream}")
|
39 |
-
|
40 |
-
# Transform OpenAI request to Gemini format
|
41 |
-
gemini_request_data = openai_request_to_gemini(request)
|
42 |
-
|
43 |
-
# Build the payload for Google API
|
44 |
-
gemini_payload = build_gemini_payload_from_openai(gemini_request_data)
|
45 |
-
|
46 |
-
except Exception as e:
|
47 |
-
logging.error(f"Error processing OpenAI request: {str(e)}")
|
48 |
-
return Response(
|
49 |
-
content=json.dumps({
|
50 |
-
"error": {
|
51 |
-
"message": f"Request processing failed: {str(e)}",
|
52 |
-
"type": "invalid_request_error",
|
53 |
-
"code": 400
|
54 |
-
}
|
55 |
-
}),
|
56 |
-
status_code=400,
|
57 |
-
media_type="application/json"
|
58 |
-
)
|
59 |
-
|
60 |
-
if request.stream:
|
61 |
-
# Handle streaming response
|
62 |
-
async def openai_stream_generator():
|
63 |
-
try:
|
64 |
-
response = send_gemini_request(gemini_payload, is_streaming=True)
|
65 |
-
|
66 |
-
if isinstance(response, StreamingResponse):
|
67 |
-
response_id = "chatcmpl-" + str(uuid.uuid4())
|
68 |
-
logging.info(f"Starting streaming response: {response_id}")
|
69 |
-
|
70 |
-
async for chunk in response.body_iterator:
|
71 |
-
if isinstance(chunk, bytes):
|
72 |
-
chunk = chunk.decode('utf-8')
|
73 |
-
|
74 |
-
if chunk.startswith('data: '):
|
75 |
-
try:
|
76 |
-
# Parse the Gemini streaming chunk
|
77 |
-
chunk_data = chunk[6:] # Remove 'data: ' prefix
|
78 |
-
gemini_chunk = json.loads(chunk_data)
|
79 |
-
|
80 |
-
# Check if this is an error chunk
|
81 |
-
if "error" in gemini_chunk:
|
82 |
-
logging.error(f"Error in streaming response: {gemini_chunk['error']}")
|
83 |
-
# Transform error to OpenAI format
|
84 |
-
error_data = {
|
85 |
-
"error": {
|
86 |
-
"message": gemini_chunk["error"].get("message", "Unknown error"),
|
87 |
-
"type": gemini_chunk["error"].get("type", "api_error"),
|
88 |
-
"code": gemini_chunk["error"].get("code")
|
89 |
-
}
|
90 |
-
}
|
91 |
-
yield f"data: {json.dumps(error_data)}\n\n"
|
92 |
-
yield "data: [DONE]\n\n"
|
93 |
-
return
|
94 |
-
|
95 |
-
# Transform to OpenAI format
|
96 |
-
openai_chunk = gemini_stream_chunk_to_openai(
|
97 |
-
gemini_chunk,
|
98 |
-
request.model,
|
99 |
-
response_id
|
100 |
-
)
|
101 |
-
|
102 |
-
# Send as OpenAI streaming format
|
103 |
-
yield f"data: {json.dumps(openai_chunk)}\n\n"
|
104 |
-
await asyncio.sleep(0)
|
105 |
-
|
106 |
-
except (json.JSONDecodeError, KeyError, UnicodeDecodeError) as e:
|
107 |
-
logging.warning(f"Failed to parse streaming chunk: {str(e)}")
|
108 |
-
continue
|
109 |
-
|
110 |
-
# Send the final [DONE] marker
|
111 |
-
yield "data: [DONE]\n\n"
|
112 |
-
logging.info(f"Completed streaming response: {response_id}")
|
113 |
-
else:
|
114 |
-
# Error case - handle Response object with error
|
115 |
-
error_msg = "Streaming request failed"
|
116 |
-
status_code = 500
|
117 |
-
|
118 |
-
if hasattr(response, 'status_code'):
|
119 |
-
status_code = response.status_code
|
120 |
-
error_msg += f" (status: {status_code})"
|
121 |
-
|
122 |
-
if hasattr(response, 'body'):
|
123 |
-
try:
|
124 |
-
# Try to parse error response
|
125 |
-
error_body = response.body
|
126 |
-
if isinstance(error_body, bytes):
|
127 |
-
error_body = error_body.decode('utf-8')
|
128 |
-
error_data = json.loads(error_body)
|
129 |
-
if "error" in error_data:
|
130 |
-
error_msg = error_data["error"].get("message", error_msg)
|
131 |
-
except:
|
132 |
-
pass
|
133 |
-
|
134 |
-
logging.error(f"Streaming request failed: {error_msg}")
|
135 |
-
error_data = {
|
136 |
-
"error": {
|
137 |
-
"message": error_msg,
|
138 |
-
"type": "invalid_request_error" if status_code == 404 else "api_error",
|
139 |
-
"code": status_code
|
140 |
-
}
|
141 |
-
}
|
142 |
-
yield f"data: {json.dumps(error_data)}\n\n"
|
143 |
-
yield "data: [DONE]\n\n"
|
144 |
-
except Exception as e:
|
145 |
-
logging.error(f"Streaming error: {str(e)}")
|
146 |
-
error_data = {
|
147 |
-
"error": {
|
148 |
-
"message": f"Streaming failed: {str(e)}",
|
149 |
-
"type": "api_error",
|
150 |
-
"code": 500
|
151 |
-
}
|
152 |
-
}
|
153 |
-
yield f"data: {json.dumps(error_data)}\n\n"
|
154 |
-
yield "data: [DONE]\n\n"
|
155 |
-
|
156 |
-
return StreamingResponse(
|
157 |
-
openai_stream_generator(),
|
158 |
-
media_type="text/event-stream"
|
159 |
-
)
|
160 |
-
|
161 |
-
else:
|
162 |
-
# Handle non-streaming response
|
163 |
-
try:
|
164 |
-
response = send_gemini_request(gemini_payload, is_streaming=False)
|
165 |
-
|
166 |
-
if isinstance(response, Response) and response.status_code != 200:
|
167 |
-
# Handle error responses from Google API
|
168 |
-
logging.error(f"Gemini API error: status={response.status_code}")
|
169 |
-
|
170 |
-
try:
|
171 |
-
# Try to parse the error response and transform to OpenAI format
|
172 |
-
error_body = response.body
|
173 |
-
if isinstance(error_body, bytes):
|
174 |
-
error_body = error_body.decode('utf-8')
|
175 |
-
|
176 |
-
error_data = json.loads(error_body)
|
177 |
-
if "error" in error_data:
|
178 |
-
# Transform Google API error to OpenAI format
|
179 |
-
openai_error = {
|
180 |
-
"error": {
|
181 |
-
"message": error_data["error"].get("message", f"API error: {response.status_code}"),
|
182 |
-
"type": error_data["error"].get("type", "invalid_request_error" if response.status_code == 404 else "api_error"),
|
183 |
-
"code": error_data["error"].get("code", response.status_code)
|
184 |
-
}
|
185 |
-
}
|
186 |
-
return Response(
|
187 |
-
content=json.dumps(openai_error),
|
188 |
-
status_code=response.status_code,
|
189 |
-
media_type="application/json"
|
190 |
-
)
|
191 |
-
except (json.JSONDecodeError, UnicodeDecodeError):
|
192 |
-
pass
|
193 |
-
|
194 |
-
# Fallback error response
|
195 |
-
return Response(
|
196 |
-
content=json.dumps({
|
197 |
-
"error": {
|
198 |
-
"message": f"API error: {response.status_code}",
|
199 |
-
"type": "invalid_request_error" if response.status_code == 404 else "api_error",
|
200 |
-
"code": response.status_code
|
201 |
-
}
|
202 |
-
}),
|
203 |
-
status_code=response.status_code,
|
204 |
-
media_type="application/json"
|
205 |
-
)
|
206 |
-
|
207 |
-
try:
|
208 |
-
# Parse Gemini response and transform to OpenAI format
|
209 |
-
gemini_response = json.loads(response.body)
|
210 |
-
openai_response = gemini_response_to_openai(gemini_response, request.model)
|
211 |
-
|
212 |
-
logging.info(f"Successfully processed non-streaming response for model: {request.model}")
|
213 |
-
return openai_response
|
214 |
-
|
215 |
-
except (json.JSONDecodeError, AttributeError) as e:
|
216 |
-
logging.error(f"Failed to parse Gemini response: {str(e)}")
|
217 |
-
return Response(
|
218 |
-
content=json.dumps({
|
219 |
-
"error": {
|
220 |
-
"message": f"Failed to process response: {str(e)}",
|
221 |
-
"type": "api_error",
|
222 |
-
"code": 500
|
223 |
-
}
|
224 |
-
}),
|
225 |
-
status_code=500,
|
226 |
-
media_type="application/json"
|
227 |
-
)
|
228 |
-
except Exception as e:
|
229 |
-
logging.error(f"Non-streaming request failed: {str(e)}")
|
230 |
-
return Response(
|
231 |
-
content=json.dumps({
|
232 |
-
"error": {
|
233 |
-
"message": f"Request failed: {str(e)}",
|
234 |
-
"type": "api_error",
|
235 |
-
"code": 500
|
236 |
-
}
|
237 |
-
}),
|
238 |
-
status_code=500,
|
239 |
-
media_type="application/json"
|
240 |
-
)
|
241 |
-
|
242 |
-
|
243 |
-
@router.get("/v1/models")
|
244 |
-
async def openai_list_models(username: str = Depends(authenticate_user)):
|
245 |
-
"""
|
246 |
-
OpenAI-compatible models endpoint.
|
247 |
-
Returns available models in OpenAI format.
|
248 |
-
"""
|
249 |
-
|
250 |
-
try:
|
251 |
-
logging.info("OpenAI models list requested")
|
252 |
-
|
253 |
-
# Convert our Gemini models to OpenAI format
|
254 |
-
from .config import SUPPORTED_MODELS
|
255 |
-
|
256 |
-
openai_models = []
|
257 |
-
for model in SUPPORTED_MODELS:
|
258 |
-
# Remove "models/" prefix for OpenAI compatibility
|
259 |
-
model_id = model["name"].replace("models/", "")
|
260 |
-
openai_models.append({
|
261 |
-
"id": model_id,
|
262 |
-
"object": "model",
|
263 |
-
"created": 1677610602, # Static timestamp
|
264 |
-
"owned_by": "google",
|
265 |
-
"permission": [
|
266 |
-
{
|
267 |
-
"id": "modelperm-" + model_id.replace("/", "-"),
|
268 |
-
"object": "model_permission",
|
269 |
-
"created": 1677610602,
|
270 |
-
"allow_create_engine": False,
|
271 |
-
"allow_sampling": True,
|
272 |
-
"allow_logprobs": False,
|
273 |
-
"allow_search_indices": False,
|
274 |
-
"allow_view": True,
|
275 |
-
"allow_fine_tuning": False,
|
276 |
-
"organization": "*",
|
277 |
-
"group": None,
|
278 |
-
"is_blocking": False
|
279 |
-
}
|
280 |
-
],
|
281 |
-
"root": model_id,
|
282 |
-
"parent": None
|
283 |
-
})
|
284 |
-
|
285 |
-
logging.info(f"Returning {len(openai_models)} models")
|
286 |
-
return {
|
287 |
-
"object": "list",
|
288 |
-
"data": openai_models
|
289 |
-
}
|
290 |
-
|
291 |
-
except Exception as e:
|
292 |
-
logging.error(f"Failed to list models: {str(e)}")
|
293 |
-
return Response(
|
294 |
-
content=json.dumps({
|
295 |
-
"error": {
|
296 |
-
"message": f"Failed to list models: {str(e)}",
|
297 |
-
"type": "api_error",
|
298 |
-
"code": 500
|
299 |
-
}
|
300 |
-
}),
|
301 |
-
status_code=500,
|
302 |
-
media_type="application/json"
|
303 |
-
)
|
304 |
-
|
305 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/openai_transformers.py
DELETED
@@ -1,258 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
OpenAI Format Transformers - Handles conversion between OpenAI and Gemini API formats.
|
3 |
-
This module contains all the logic for transforming requests and responses between the two formats.
|
4 |
-
"""
|
5 |
-
import json
|
6 |
-
import time
|
7 |
-
import uuid
|
8 |
-
from typing import Dict, Any
|
9 |
-
|
10 |
-
from .models import OpenAIChatCompletionRequest, OpenAIChatCompletionResponse
|
11 |
-
from .config import (
|
12 |
-
DEFAULT_SAFETY_SETTINGS,
|
13 |
-
is_search_model,
|
14 |
-
get_base_model_name,
|
15 |
-
get_thinking_budget,
|
16 |
-
should_include_thoughts
|
17 |
-
)
|
18 |
-
|
19 |
-
|
20 |
-
def openai_request_to_gemini(openai_request: OpenAIChatCompletionRequest) -> Dict[str, Any]:
|
21 |
-
"""
|
22 |
-
Transform an OpenAI chat completion request to Gemini format.
|
23 |
-
|
24 |
-
Args:
|
25 |
-
openai_request: OpenAI format request
|
26 |
-
|
27 |
-
Returns:
|
28 |
-
Dictionary in Gemini API format
|
29 |
-
"""
|
30 |
-
contents = []
|
31 |
-
|
32 |
-
# Process each message in the conversation
|
33 |
-
for message in openai_request.messages:
|
34 |
-
role = message.role
|
35 |
-
|
36 |
-
# Map OpenAI roles to Gemini roles
|
37 |
-
if role == "assistant":
|
38 |
-
role = "model"
|
39 |
-
elif role == "system":
|
40 |
-
role = "user" # Gemini treats system messages as user messages
|
41 |
-
|
42 |
-
# Handle different content types (string vs list of parts)
|
43 |
-
if isinstance(message.content, list):
|
44 |
-
parts = []
|
45 |
-
for part in message.content:
|
46 |
-
if part.get("type") == "text":
|
47 |
-
parts.append({"text": part.get("text", "")})
|
48 |
-
elif part.get("type") == "image_url":
|
49 |
-
image_url = part.get("image_url", {}).get("url")
|
50 |
-
if image_url:
|
51 |
-
# Parse data URI: "data:image/jpeg;base64,{base64_image}"
|
52 |
-
try:
|
53 |
-
mime_type, base64_data = image_url.split(";")
|
54 |
-
_, mime_type = mime_type.split(":")
|
55 |
-
_, base64_data = base64_data.split(",")
|
56 |
-
parts.append({
|
57 |
-
"inlineData": {
|
58 |
-
"mimeType": mime_type,
|
59 |
-
"data": base64_data
|
60 |
-
}
|
61 |
-
})
|
62 |
-
except ValueError:
|
63 |
-
continue
|
64 |
-
contents.append({"role": role, "parts": parts})
|
65 |
-
else:
|
66 |
-
# Simple text content
|
67 |
-
contents.append({"role": role, "parts": [{"text": message.content}]})
|
68 |
-
|
69 |
-
# Map OpenAI generation parameters to Gemini format
|
70 |
-
generation_config = {}
|
71 |
-
if openai_request.temperature is not None:
|
72 |
-
generation_config["temperature"] = openai_request.temperature
|
73 |
-
if openai_request.top_p is not None:
|
74 |
-
generation_config["topP"] = openai_request.top_p
|
75 |
-
if openai_request.max_tokens is not None:
|
76 |
-
generation_config["maxOutputTokens"] = openai_request.max_tokens
|
77 |
-
if openai_request.stop is not None:
|
78 |
-
# Gemini supports stop sequences
|
79 |
-
if isinstance(openai_request.stop, str):
|
80 |
-
generation_config["stopSequences"] = [openai_request.stop]
|
81 |
-
elif isinstance(openai_request.stop, list):
|
82 |
-
generation_config["stopSequences"] = openai_request.stop
|
83 |
-
if openai_request.frequency_penalty is not None:
|
84 |
-
# Map frequency_penalty to Gemini's frequencyPenalty
|
85 |
-
generation_config["frequencyPenalty"] = openai_request.frequency_penalty
|
86 |
-
if openai_request.presence_penalty is not None:
|
87 |
-
# Map presence_penalty to Gemini's presencePenalty
|
88 |
-
generation_config["presencePenalty"] = openai_request.presence_penalty
|
89 |
-
if openai_request.n is not None:
|
90 |
-
# Map n (number of completions) to Gemini's candidateCount
|
91 |
-
generation_config["candidateCount"] = openai_request.n
|
92 |
-
if openai_request.seed is not None:
|
93 |
-
# Gemini supports seed for reproducible outputs
|
94 |
-
generation_config["seed"] = openai_request.seed
|
95 |
-
if openai_request.response_format is not None:
|
96 |
-
# Handle JSON mode if specified
|
97 |
-
if openai_request.response_format.get("type") == "json_object":
|
98 |
-
generation_config["responseMimeType"] = "application/json"
|
99 |
-
|
100 |
-
# Build the request payload
|
101 |
-
request_payload = {
|
102 |
-
"contents": contents,
|
103 |
-
"generationConfig": generation_config,
|
104 |
-
"safetySettings": DEFAULT_SAFETY_SETTINGS,
|
105 |
-
"model": get_base_model_name(openai_request.model) # Use base model name for API call
|
106 |
-
}
|
107 |
-
|
108 |
-
# Add Google Search grounding for search models
|
109 |
-
if is_search_model(openai_request.model):
|
110 |
-
request_payload["tools"] = [{"googleSearch": {}}]
|
111 |
-
|
112 |
-
# Add thinking configuration for thinking models
|
113 |
-
thinking_budget = get_thinking_budget(openai_request.model)
|
114 |
-
if thinking_budget is not None:
|
115 |
-
request_payload["generationConfig"]["thinkingConfig"] = {
|
116 |
-
"thinkingBudget": thinking_budget,
|
117 |
-
"includeThoughts": should_include_thoughts(openai_request.model)
|
118 |
-
}
|
119 |
-
|
120 |
-
return request_payload
|
121 |
-
|
122 |
-
|
123 |
-
def gemini_response_to_openai(gemini_response: Dict[str, Any], model: str) -> Dict[str, Any]:
|
124 |
-
"""
|
125 |
-
Transform a Gemini API response to OpenAI chat completion format.
|
126 |
-
|
127 |
-
Args:
|
128 |
-
gemini_response: Response from Gemini API
|
129 |
-
model: Model name to include in response
|
130 |
-
|
131 |
-
Returns:
|
132 |
-
Dictionary in OpenAI chat completion format
|
133 |
-
"""
|
134 |
-
choices = []
|
135 |
-
|
136 |
-
for candidate in gemini_response.get("candidates", []):
|
137 |
-
role = candidate.get("content", {}).get("role", "assistant")
|
138 |
-
|
139 |
-
# Map Gemini roles back to OpenAI roles
|
140 |
-
if role == "model":
|
141 |
-
role = "assistant"
|
142 |
-
|
143 |
-
# Extract and separate thinking tokens from regular content
|
144 |
-
parts = candidate.get("content", {}).get("parts", [])
|
145 |
-
content = ""
|
146 |
-
reasoning_content = ""
|
147 |
-
|
148 |
-
for part in parts:
|
149 |
-
if not part.get("text"):
|
150 |
-
continue
|
151 |
-
|
152 |
-
# Check if this part contains thinking tokens
|
153 |
-
if part.get("thought", False):
|
154 |
-
reasoning_content += part.get("text", "")
|
155 |
-
else:
|
156 |
-
content += part.get("text", "")
|
157 |
-
|
158 |
-
# Build message object
|
159 |
-
message = {
|
160 |
-
"role": role,
|
161 |
-
"content": content,
|
162 |
-
}
|
163 |
-
|
164 |
-
# Add reasoning_content if there are thinking tokens
|
165 |
-
if reasoning_content:
|
166 |
-
message["reasoning_content"] = reasoning_content
|
167 |
-
|
168 |
-
choices.append({
|
169 |
-
"index": candidate.get("index", 0),
|
170 |
-
"message": message,
|
171 |
-
"finish_reason": _map_finish_reason(candidate.get("finishReason")),
|
172 |
-
})
|
173 |
-
|
174 |
-
return {
|
175 |
-
"id": str(uuid.uuid4()),
|
176 |
-
"object": "chat.completion",
|
177 |
-
"created": int(time.time()),
|
178 |
-
"model": model,
|
179 |
-
"choices": choices,
|
180 |
-
}
|
181 |
-
|
182 |
-
|
183 |
-
def gemini_stream_chunk_to_openai(gemini_chunk: Dict[str, Any], model: str, response_id: str) -> Dict[str, Any]:
|
184 |
-
"""
|
185 |
-
Transform a Gemini streaming response chunk to OpenAI streaming format.
|
186 |
-
|
187 |
-
Args:
|
188 |
-
gemini_chunk: Single chunk from Gemini streaming response
|
189 |
-
model: Model name to include in response
|
190 |
-
response_id: Consistent ID for this streaming response
|
191 |
-
|
192 |
-
Returns:
|
193 |
-
Dictionary in OpenAI streaming format
|
194 |
-
"""
|
195 |
-
choices = []
|
196 |
-
|
197 |
-
for candidate in gemini_chunk.get("candidates", []):
|
198 |
-
role = candidate.get("content", {}).get("role", "assistant")
|
199 |
-
|
200 |
-
# Map Gemini roles back to OpenAI roles
|
201 |
-
if role == "model":
|
202 |
-
role = "assistant"
|
203 |
-
|
204 |
-
# Extract and separate thinking tokens from regular content
|
205 |
-
parts = candidate.get("content", {}).get("parts", [])
|
206 |
-
content = ""
|
207 |
-
reasoning_content = ""
|
208 |
-
|
209 |
-
for part in parts:
|
210 |
-
if not part.get("text"):
|
211 |
-
continue
|
212 |
-
|
213 |
-
# Check if this part contains thinking tokens
|
214 |
-
if part.get("thought", False):
|
215 |
-
reasoning_content += part.get("text", "")
|
216 |
-
else:
|
217 |
-
content += part.get("text", "")
|
218 |
-
|
219 |
-
# Build delta object
|
220 |
-
delta = {}
|
221 |
-
if content:
|
222 |
-
delta["content"] = content
|
223 |
-
if reasoning_content:
|
224 |
-
delta["reasoning_content"] = reasoning_content
|
225 |
-
|
226 |
-
choices.append({
|
227 |
-
"index": candidate.get("index", 0),
|
228 |
-
"delta": delta,
|
229 |
-
"finish_reason": _map_finish_reason(candidate.get("finishReason")),
|
230 |
-
})
|
231 |
-
|
232 |
-
return {
|
233 |
-
"id": response_id,
|
234 |
-
"object": "chat.completion.chunk",
|
235 |
-
"created": int(time.time()),
|
236 |
-
"model": model,
|
237 |
-
"choices": choices,
|
238 |
-
}
|
239 |
-
|
240 |
-
|
241 |
-
def _map_finish_reason(gemini_reason: str) -> str:
|
242 |
-
"""
|
243 |
-
Map Gemini finish reasons to OpenAI finish reasons.
|
244 |
-
|
245 |
-
Args:
|
246 |
-
gemini_reason: Finish reason from Gemini API
|
247 |
-
|
248 |
-
Returns:
|
249 |
-
OpenAI-compatible finish reason
|
250 |
-
"""
|
251 |
-
if gemini_reason == "STOP":
|
252 |
-
return "stop"
|
253 |
-
elif gemini_reason == "MAX_TOKENS":
|
254 |
-
return "length"
|
255 |
-
elif gemini_reason in ["SAFETY", "RECITATION"]:
|
256 |
-
return "content_filter"
|
257 |
-
else:
|
258 |
-
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/utils.py
DELETED
@@ -1,38 +0,0 @@
|
|
1 |
-
import platform
|
2 |
-
from .config import CLI_VERSION
|
3 |
-
|
4 |
-
def get_user_agent():
|
5 |
-
"""Generate User-Agent string matching gemini-cli format."""
|
6 |
-
version = CLI_VERSION
|
7 |
-
system = platform.system()
|
8 |
-
arch = platform.machine()
|
9 |
-
return f"GeminiCLI/{version} ({system}; {arch})"
|
10 |
-
|
11 |
-
def get_platform_string():
|
12 |
-
"""Generate platform string matching gemini-cli format."""
|
13 |
-
system = platform.system().upper()
|
14 |
-
arch = platform.machine().upper()
|
15 |
-
|
16 |
-
# Map to gemini-cli platform format
|
17 |
-
if system == "DARWIN":
|
18 |
-
if arch in ["ARM64", "AARCH64"]:
|
19 |
-
return "DARWIN_ARM64"
|
20 |
-
else:
|
21 |
-
return "DARWIN_AMD64"
|
22 |
-
elif system == "LINUX":
|
23 |
-
if arch in ["ARM64", "AARCH64"]:
|
24 |
-
return "LINUX_ARM64"
|
25 |
-
else:
|
26 |
-
return "LINUX_AMD64"
|
27 |
-
elif system == "WINDOWS":
|
28 |
-
return "WINDOWS_AMD64"
|
29 |
-
else:
|
30 |
-
return "PLATFORM_UNSPECIFIED"
|
31 |
-
|
32 |
-
def get_client_metadata(project_id=None):
|
33 |
-
return {
|
34 |
-
"ideType": "IDE_UNSPECIFIED",
|
35 |
-
"platform": get_platform_string(),
|
36 |
-
"pluginType": "GEMINI",
|
37 |
-
"duetProject": project_id,
|
38 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|