File size: 10,732 Bytes
7cc3183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd504cd
 
 
 
 
 
 
 
 
 
7cc3183
dd504cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cc3183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd504cd
 
7cc3183
dd504cd
7cc3183
dd504cd
 
 
 
 
 
 
 
 
7cc3183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd504cd
 
 
 
 
 
 
 
 
 
7cc3183
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import json
import time
import math
import asyncio
from typing import List, Dict, Any, Callable, Union
from fastapi.responses import JSONResponse, StreamingResponse

from google.auth.transport.requests import Request as AuthRequest
from google.genai import types 
from google import genai # Needed if _execute_gemini_call uses genai.Client directly

# Local module imports
from models import OpenAIRequest, OpenAIMessage # Changed from relative
from message_processing import deobfuscate_text, convert_to_openai_format, convert_chunk_to_openai, create_final_chunk # Changed from relative
import config as app_config # Changed from relative

def create_openai_error_response(status_code: int, message: str, error_type: str) -> Dict[str, Any]:
    return {
        "error": {
            "message": message,
            "type": error_type,
            "code": status_code,
            "param": None,
        }
    }

def create_generation_config(request: OpenAIRequest) -> Dict[str, Any]:
    config = {}
    if request.temperature is not None: config["temperature"] = request.temperature
    if request.max_tokens is not None: config["max_output_tokens"] = request.max_tokens
    if request.top_p is not None: config["top_p"] = request.top_p
    if request.top_k is not None: config["top_k"] = request.top_k
    if request.stop is not None: config["stop_sequences"] = request.stop
    if request.seed is not None: config["seed"] = request.seed
    if request.presence_penalty is not None: config["presence_penalty"] = request.presence_penalty
    if request.frequency_penalty is not None: config["frequency_penalty"] = request.frequency_penalty
    if request.n is not None: config["candidate_count"] = request.n
    config["safety_settings"] = [
            types.SafetySetting(category="HARM_CATEGORY_HATE_SPEECH", threshold="OFF"),
            types.SafetySetting(category="HARM_CATEGORY_DANGEROUS_CONTENT", threshold="OFF"),
            types.SafetySetting(category="HARM_CATEGORY_SEXUALLY_EXPLICIT", threshold="OFF"),
            types.SafetySetting(category="HARM_CATEGORY_HARASSMENT", threshold="OFF"),
            types.SafetySetting(category="HARM_CATEGORY_CIVIC_INTEGRITY", threshold="OFF")
    ]
    return config

def is_response_valid(response):
    if response is None:
        print("DEBUG: Response is None, therefore invalid.")
        return False
    
    # Check for direct text attribute
    if hasattr(response, 'text') and isinstance(response.text, str) and response.text.strip():
        # print("DEBUG: Response valid due to response.text")
        return True
        
    # Check candidates for text content
    if hasattr(response, 'candidates') and response.candidates:
        for candidate in response.candidates: # Iterate through all candidates
            if hasattr(candidate, 'text') and isinstance(candidate.text, str) and candidate.text.strip():
                # print(f"DEBUG: Response valid due to candidate.text in candidate")
                return True
            if hasattr(candidate, 'content') and hasattr(candidate.content, 'parts') and candidate.content.parts:
                for part in candidate.content.parts:
                    if hasattr(part, 'text') and isinstance(part.text, str) and part.text.strip():
                        # print(f"DEBUG: Response valid due to part.text in candidate's content part")
                        return True
                        
    # Check for prompt_feedback, which indicates the API processed the request,
    # even if the content is empty (e.g. due to safety filtering).
    # The fake_stream_generator should still attempt to process this to convey safety messages if present.
    if hasattr(response, 'prompt_feedback'):
        # Check if there's any block reason, which might be interesting to log or handle
        if hasattr(response.prompt_feedback, 'block_reason') and response.prompt_feedback.block_reason:
            print(f"DEBUG: Response has prompt_feedback with block_reason: {response.prompt_feedback.block_reason}, considering it valid for processing.")
        else:
            print("DEBUG: Response has prompt_feedback (no block_reason), considering it valid for processing.")
        return True
        
    print("DEBUG: Response is invalid, no usable text content or prompt_feedback found.")
    return False

async def fake_stream_generator(client_instance, model_name: str, prompt: Union[types.Content, List[types.Content]], current_gen_config: Dict[str, Any], request_obj: OpenAIRequest):
    response_id = f"chatcmpl-{int(time.time())}"
    async def fake_stream_inner():
        print(f"FAKE STREAMING: Making non-streaming request to Gemini API (Model: {model_name})")
        api_call_task = asyncio.create_task(
            client_instance.aio.models.generate_content(
                model=model_name, contents=prompt, config=current_gen_config
            )
        )
        while not api_call_task.done():
            keep_alive_data = {
                "id": "chatcmpl-keepalive", "object": "chat.completion.chunk", "created": int(time.time()),
                "model": request_obj.model, "choices": [{"delta": {"content": ""}, "index": 0, "finish_reason": None}]
            }
            yield f"data: {json.dumps(keep_alive_data)}\n\n"
            await asyncio.sleep(app_config.FAKE_STREAMING_INTERVAL_SECONDS)
        try:
            response = api_call_task.result()
            if not is_response_valid(response): 
                raise ValueError(f"Invalid/empty response in fake stream: {str(response)[:200]}")
            full_text = ""
            if hasattr(response, 'text'):
                full_text = response.text or "" # Coalesce None to empty string
            elif hasattr(response, 'candidates') and response.candidates:
                # Typically, we focus on the first candidate for non-streaming synthesis
                candidate = response.candidates[0]
                if hasattr(candidate, 'text'):
                    full_text = candidate.text or "" # Coalesce None to empty string
                elif hasattr(candidate, 'content') and hasattr(candidate.content, 'parts') and candidate.content.parts:
                    # Ensure parts are iterated and text is joined correctly even if some parts have no text or part.text is None
                    texts = []
                    for part in candidate.content.parts:
                        if hasattr(part, 'text') and part.text is not None: # Check part.text exists and is not None
                            texts.append(part.text)
                    full_text = "".join(texts)
            if request_obj.model.endswith("-encrypt-full"):
                full_text = deobfuscate_text(full_text)
            
            chunk_size = max(20, math.ceil(len(full_text) / 10))
            for i in range(0, len(full_text), chunk_size):
                chunk_text = full_text[i:i+chunk_size]
                delta_data = {
                    "id": response_id, "object": "chat.completion.chunk", "created": int(time.time()),
                    "model": request_obj.model, "choices": [{"index": 0, "delta": {"content": chunk_text}, "finish_reason": None}]
                }
                yield f"data: {json.dumps(delta_data)}\n\n"
                await asyncio.sleep(0.05)
            yield create_final_chunk(request_obj.model, response_id)
            yield "data: [DONE]\n\n"
        except Exception as e:
            err_msg = f"Error in fake_stream_generator: {str(e)}"
            print(err_msg)
            err_resp = create_openai_error_response(500, err_msg, "server_error")
            yield f"data: {json.dumps(err_resp)}\n\n"
            yield "data: [DONE]\n\n"
    return fake_stream_inner()

async def execute_gemini_call(
    current_client: Any, # Should be genai.Client or similar AsyncClient
    model_to_call: str, 
    prompt_func: Callable[[List[OpenAIMessage]], Union[types.Content, List[types.Content]]], 
    gen_config_for_call: Dict[str, Any],
    request_obj: OpenAIRequest # Pass the whole request object
):
    actual_prompt_for_call = prompt_func(request_obj.messages)
    
    if request_obj.stream:
        if app_config.FAKE_STREAMING_ENABLED:
            return StreamingResponse(
                await fake_stream_generator(current_client, model_to_call, actual_prompt_for_call, gen_config_for_call, request_obj), 
                media_type="text/event-stream"
            )

        response_id_for_stream = f"chatcmpl-{int(time.time())}"
        cand_count_stream = request_obj.n or 1
        
        async def _stream_generator_inner_for_execute(): # Renamed to avoid potential clashes
            try:
                for c_idx_call in range(cand_count_stream):
                    async for chunk_item_call in await current_client.aio.models.generate_content_stream(
                        model=model_to_call, contents=actual_prompt_for_call, config=gen_config_for_call
                    ):
                        yield convert_chunk_to_openai(chunk_item_call, request_obj.model, response_id_for_stream, c_idx_call)
                yield create_final_chunk(request_obj.model, response_id_for_stream, cand_count_stream)
                yield "data: [DONE]\n\n"
            except Exception as e_stream_call:
                print(f"Streaming Error in _execute_gemini_call: {e_stream_call}")
                
                error_message_str = str(e_stream_call)
                # Truncate very long error messages to prevent excessively large JSON payloads.
                if len(error_message_str) > 1024: # Max length for the error string
                    error_message_str = error_message_str[:1024] + "..."
                
                err_resp_content_call = create_openai_error_response(500, error_message_str, "server_error")
                json_payload_for_error = json.dumps(err_resp_content_call)
                print(f"DEBUG: Yielding error JSON payload during true streaming: {json_payload_for_error}")
                yield f"data: {json_payload_for_error}\n\n"
                yield "data: [DONE]\n\n"
                raise # Re-raise to be caught by retry logic if any
        return StreamingResponse(_stream_generator_inner_for_execute(), media_type="text/event-stream")
    else: 
        response_obj_call = await current_client.aio.models.generate_content(
            model=model_to_call, contents=actual_prompt_for_call, config=gen_config_for_call
        )
        if not is_response_valid(response_obj_call):
            raise ValueError("Invalid/empty response from non-streaming Gemini call in _execute_gemini_call.")
        return JSONResponse(content=convert_to_openai_format(response_obj_call, request_obj.model))